One Goal, Many Challenges: Robust Preference Optimization Amid Content-Aware and Multi-Source Noise
- URL: http://arxiv.org/abs/2503.12301v1
- Date: Sun, 16 Mar 2025 00:22:00 GMT
- Title: One Goal, Many Challenges: Robust Preference Optimization Amid Content-Aware and Multi-Source Noise
- Authors: Amirabbas Afzali, Amirhossein Afsharrad, Seyed Shahabeddin Mousavi, Sanjay Lall,
- Abstract summary: This paper introduces Content-Aware Noise-Resilient Preference Optimization (CNRPO), a novel framework that addresses multiple sources of content-dependent noise in preference learning.<n>We leverage backdoor attack mechanisms to efficiently learn and control various noise sources within a single model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have made significant strides in generating human-like responses, largely due to preference alignment techniques. However, these methods often assume unbiased human feedback, which is rarely the case in real-world scenarios. This paper introduces Content-Aware Noise-Resilient Preference Optimization (CNRPO), a novel framework that addresses multiple sources of content-dependent noise in preference learning. CNRPO employs a multi-objective optimization approach to separate true preferences from content-aware noises, effectively mitigating their impact. We leverage backdoor attack mechanisms to efficiently learn and control various noise sources within a single model. Theoretical analysis and extensive experiments on different synthetic noisy datasets demonstrate that CNRPO significantly improves alignment with primary human preferences while controlling for secondary noises and biases, such as response length and harmfulness.
Related papers
- Debiasing Multimodal Large Language Models via Noise-Aware Preference Optimization [31.741110625305186]
We propose using the paradigm of preference optimization to solve the modality bias problem.
Specifically, we first construct the dataset by introducing perturbations to reduce the informational content of certain modalities.
To address the inevitable noise in automatically constructed data, we combine the noise robust Mean Absolute Error with the Binary Cross Entropy in Direct Preference Optimization.
arXiv Detail & Related papers (2025-03-23T04:00:11Z) - MPO: An Efficient Post-Processing Framework for Mixing Diverse Preference Alignment [14.541973333460149]
Mixing Preference Optimization (MPO) is a post-processing framework for aggregating single-objective policies.<n>MPO achieves balanced performance across diverse preferences, outperforming existing models with significantly reduced computational costs.
arXiv Detail & Related papers (2025-02-25T23:22:12Z) - Dynamic Noise Preference Optimization for LLM Self-Improvement via Synthetic Data [51.62162460809116]
We introduce Dynamic Noise Preference Optimization (DNPO) to ensure consistent improvements across iterations.<n>In experiments with Zephyr-7B, DNPO consistently outperforms existing methods, showing an average performance boost of 2.6%.<n> DNPO shows a significant improvement in model-generated data quality, with a 29.4% win-loss rate gap compared to the baseline in GPT-4 evaluations.
arXiv Detail & Related papers (2025-02-08T01:20:09Z) - When SparseMoE Meets Noisy Interactions: An Ensemble View on Denoising Recommendation [3.050721435894337]
We propose a novel Adaptive Ensemble Learning (AEL) for denoising recommendation.<n>AEL employs a sparse gating network as a brain, selecting suitable experts to synthesize appropriate denoising capacities.<n>To address the ensemble learning shortcoming of model complexity, we also proposed a novel method that stacks components to create sub-recommenders.
arXiv Detail & Related papers (2024-09-19T12:55:34Z) - Towards Robust Alignment of Language Models: Distributionally Robustifying Direct Preference Optimization [45.6430987775264]
This study addresses the challenge of noise in training datasets for Direct Preference Optimization (DPO)
We categorize noise into pointwise noise, which includes low-quality data points, and pairwise noise, which encompasses erroneous data pair associations.
We introduce Distributionally Robustifying DPO, which integrates pairwise robustness by optimizing against worst-case pairwise scenarios.
arXiv Detail & Related papers (2024-07-10T17:48:25Z) - Stable Neighbor Denoising for Source-free Domain Adaptive Segmentation [91.83820250747935]
Pseudo-label noise is mainly contained in unstable samples in which predictions of most pixels undergo significant variations during self-training.
We introduce the Stable Neighbor Denoising (SND) approach, which effectively discovers highly correlated stable and unstable samples.
SND consistently outperforms state-of-the-art methods in various SFUDA semantic segmentation settings.
arXiv Detail & Related papers (2024-06-10T21:44:52Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - ROPO: Robust Preference Optimization for Large Language Models [59.10763211091664]
We propose an iterative alignment approach that integrates noise-tolerance and filtering of noisy samples without the aid of external models.
Experiments on three widely-used datasets with Mistral-7B and Llama-2-7B demonstrate that ROPO significantly outperforms existing preference alignment methods.
arXiv Detail & Related papers (2024-04-05T13:58:51Z) - Rewards-in-Context: Multi-objective Alignment of Foundation Models with Dynamic Preference Adjustment [46.44464839353993]
We introduce Rewards-in-Context (RiC), which conditions the response of a foundation model on multiple rewards in its prompt context.
RiC only requires supervised fine-tuning of a single foundation model and supports dynamic adjustment for user preferences during inference time.
arXiv Detail & Related papers (2024-02-15T18:58:31Z) - Adaptive Multi-View ICA: Estimation of noise levels for optimal
inference [65.94843987207445]
Adaptive multiView ICA (AVICA) is a noisy ICA model where each view is a linear mixture of shared independent sources with additive noise on the sources.
On synthetic data, AVICA yields better sources estimates than other group ICA methods thanks to its explicit MMSE estimator.
On real magnetoencephalograpy (MEG) data, we provide evidence that the decomposition is less sensitive to sampling noise and that the noise variance estimates are biologically plausible.
arXiv Detail & Related papers (2021-02-22T13:10:12Z) - On Dynamic Noise Influence in Differentially Private Learning [102.6791870228147]
Private Gradient Descent (PGD) is a commonly used private learning framework, which noises based on the Differential protocol.
Recent studies show that emphdynamic privacy schedules can improve at the final iteration, yet yet theoreticals of the effectiveness of such schedules remain limited.
This paper provides comprehensive analysis of noise influence in dynamic privacy schedules to answer these critical questions.
arXiv Detail & Related papers (2021-01-19T02:04:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.