Rewards-in-Context: Multi-objective Alignment of Foundation Models with Dynamic Preference Adjustment
- URL: http://arxiv.org/abs/2402.10207v6
- Date: Wed, 16 Oct 2024 03:24:02 GMT
- Title: Rewards-in-Context: Multi-objective Alignment of Foundation Models with Dynamic Preference Adjustment
- Authors: Rui Yang, Xiaoman Pan, Feng Luo, Shuang Qiu, Han Zhong, Dong Yu, Jianshu Chen,
- Abstract summary: We introduce Rewards-in-Context (RiC), which conditions the response of a foundation model on multiple rewards in its prompt context.
RiC only requires supervised fine-tuning of a single foundation model and supports dynamic adjustment for user preferences during inference time.
- Score: 46.44464839353993
- License:
- Abstract: We consider the problem of multi-objective alignment of foundation models with human preferences, which is a critical step towards helpful and harmless AI systems. However, it is generally costly and unstable to fine-tune large foundation models using reinforcement learning (RL), and the multi-dimensionality, heterogeneity, and conflicting nature of human preferences further complicate the alignment process. In this paper, we introduce Rewards-in-Context (RiC), which conditions the response of a foundation model on multiple rewards in its prompt context and applies supervised fine-tuning for alignment. The salient features of RiC are simplicity and adaptivity, as it only requires supervised fine-tuning of a single foundation model and supports dynamic adjustment for user preferences during inference time. Inspired by the analytical solution of an abstracted convex optimization problem, our dynamic inference-time adjustment method approaches the Pareto-optimal solution for multiple objectives. Empirical evidence demonstrates the efficacy of our method in aligning both Large Language Models (LLMs) and diffusion models to accommodate diverse rewards with only around 10% GPU hours compared with multi-objective RL baseline.
Related papers
- Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
Large language models (LLMs) are increasingly embedded in everyday applications.
Ensuring their alignment with the diverse preferences of individual users has become a critical challenge.
We present a novel framework for few-shot steerable alignment.
arXiv Detail & Related papers (2024-12-18T16:14:59Z) - TSO: Self-Training with Scaled Preference Optimization [14.3799656174528]
We propose TSO, a framework for preference optimization that conducts self-training preference learning without training an additional reward model.
TSO enhances the diversity of responses by constructing a model matrix and incorporating human preference responses.
Experimental results demonstrate that TSO outperforms existing mainstream methods on various alignment evaluation benchmarks.
arXiv Detail & Related papers (2024-08-31T05:37:01Z) - LLM4Rerank: LLM-based Auto-Reranking Framework for Recommendations [51.76373105981212]
Reranking is a critical component in recommender systems, playing an essential role in refining the output of recommendation algorithms.
We introduce a comprehensive reranking framework, designed to seamlessly integrate various reranking criteria.
A customizable input mechanism is also integrated, enabling the tuning of the language model's focus to meet specific reranking needs.
arXiv Detail & Related papers (2024-06-18T09:29:18Z) - Learning Reward and Policy Jointly from Demonstration and Preference Improves Alignment [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Context-aware Diversity Enhancement for Neural Multi-Objective Combinatorial Optimization [19.631213689157995]
Multi-objective optimization (MOCO) problems are prevalent in various real-world applications.
We propose a Context-aware Diversity Enhancement algorithm named CDE.
The proposed CDE can effectively and efficiently grasp the context information, resulting in diversity enhancement.
arXiv Detail & Related papers (2024-05-14T13:42:19Z) - Dependency Structure Search Bayesian Optimization for Decision Making Models [29.95525433889418]
We propose a compact multi-layered architecture modeling the dynamics of agent interactions through the concept of role.
We show strong empirical results under malformed or sparse reward.
arXiv Detail & Related papers (2023-08-01T15:56:24Z) - Exploiting Temporal Structures of Cyclostationary Signals for
Data-Driven Single-Channel Source Separation [98.95383921866096]
We study the problem of single-channel source separation (SCSS)
We focus on cyclostationary signals, which are particularly suitable in a variety of application domains.
We propose a deep learning approach using a U-Net architecture, which is competitive with the minimum MSE estimator.
arXiv Detail & Related papers (2022-08-22T14:04:56Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
Multiobjective optimization (MOCO) problems can be found in many real-world applications.
We develop a learning-based approach to approximate the whole Pareto set for a given MOCO problem without further search procedure.
Our proposed method significantly outperforms some other methods on the multiobjective traveling salesman problem, multiconditioned vehicle routing problem and multi knapsack problem in terms of solution quality, speed, and model efficiency.
arXiv Detail & Related papers (2022-03-29T09:26:22Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.