論文の概要: Synthetic Data for Robust AI Model Development in Regulated Enterprises
- arxiv url: http://arxiv.org/abs/2503.12353v1
- Date: Sun, 16 Mar 2025 04:46:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 16:00:27.384320
- Title: Synthetic Data for Robust AI Model Development in Regulated Enterprises
- Title(参考訳): 規制企業におけるロバストAIモデル開発のための合成データ
- Authors: Aditi Godbole,
- Abstract要約: 私たちは、高度に規制された産業の組織が、人工データを利用して堅牢なAIソリューションを構築する方法を示します。
我々は、AIモデルがより多様なデータから学べることによって、合成データが2つの大きな利点をもたらすことを実証した。
我々の研究は、人工データは規制産業におけるAIのゲームチェンジャーになり得ると考えている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In today's business landscape, organizations need to find the right balance between using their customers' data ethically to power AI solutions and being compliant regarding data privacy and data usage regulations. In this paper, we discuss synthetic data as a possible solution to this dilemma. Synthetic data is simulated data that mimics the real data. We explore how organizations in heavily regulated industries, such as financial institutions or healthcare organizations, can leverage synthetic data to build robust AI solutions while staying compliant. We demonstrate that synthetic data offers two significant advantages by allowing AI models to learn from more diverse data and by helping organizations stay compliant against data privacy laws with the use of synthetic data instead of customer information. We discuss case studies to show how synthetic data can be effectively used in the finance and healthcare sector while discussing the challenges of using synthetic data and some ethical questions it raises. Our research finds that synthetic data could be a game-changer for AI in regulated industries. The potential can be realized when industry, academia, and regulators collaborate to build solutions. We aim to initiate discussions on the use of synthetic data to build ethical, responsible, and effective AI systems in regulated enterprise industries.
- Abstract(参考訳): 今日のビジネスの状況では、AIソリューションに倫理的に顧客のデータを使用することと、データのプライバシとデータ使用規則に準拠することの間に、適切なバランスを見出す必要がある。
本稿では,このジレンマの解決策として合成データについて論じる。
合成データは、実際のデータを模倣するシミュレーションデータである。
我々は、金融機関や医療組織のような規制の厳しい業界の組織が、人工データを活用して、コンプライアンスを維持しながら堅牢なAIソリューションを構築する方法について検討する。
我々は、AIモデルがより多様なデータから学べることと、企業が顧客情報の代わりに合成データを使用することで、データプライバシ法に準拠し続けるのを助けることで、合成データに2つの大きな利点があることを実証した。
本稿では、合成データの利用の課題と、それが提起する倫理的問題について論じながら、金融・医療分野でどのように合成データを効果的に利用できるかを示すケーススタディについて論じる。
我々の研究は、人工データは規制産業におけるAIのゲームチェンジャーになり得ると考えている。
業界、学界、規制当局が協力してソリューションを構築することで、その可能性を実現することができる。
我々は、規制された企業における倫理的、責任的、効果的なAIシステムを構築するために、合成データの使用に関する議論を開始することを目的としている。
関連論文リスト
- Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - An Autonomous Large Language Model Agent for Chemical Literature Data
Mining [60.85177362167166]
本稿では,幅広い化学文献から高忠実度抽出が可能なエンドツーエンドAIエージェントフレームワークを提案する。
本フレームワークの有効性は,反応条件データの精度,リコール,F1スコアを用いて評価する。
論文 参考訳(メタデータ) (2024-02-20T13:21:46Z) - Synthetic Data in AI: Challenges, Applications, and Ethical Implications [16.01404243695338]
本稿では,合成データの多面的側面について考察する。
これらのデータセットが持つ可能性のある課題と潜在的なバイアスを強調します。
また、合成データセットに関連する倫理的考察と法的意味についても批判的に論じている。
論文 参考訳(メタデータ) (2024-01-03T09:03:30Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms [56.119374302685934]
AI技術の信頼性に関する深刻な懸念があった。
機械学習とディープラーニングのアルゴリズムは、開発に使用されるデータに大きく依存する。
本稿では,責任あるルーブリックを用いてデータセットを評価するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-24T14:01:53Z) - The Use of Synthetic Data to Train AI Models: Opportunities and Risks
for Sustainable Development [0.6906005491572401]
本稿では,合成データの生成,利用,普及を規定する政策について検討する。
優れた合成データポリシーは、プライバシの懸念とデータの有用性のバランスを取らなければならない。
論文 参考訳(メタデータ) (2023-08-31T23:18:53Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
合成データは、機械学習の世界において支配的な力となり、データセットを個々のニーズに合わせて調整できる未来を約束する。
合成データのより広範な妥当性と適用のために,コミュニティが克服すべき根本的な課題について論じる。
論文 参考訳(メタデータ) (2023-04-07T16:38:40Z) - Synthetic Data: Methods, Use Cases, and Risks [11.413309528464632]
研究コミュニティと業界の両方で勢いを増す可能性のある選択肢は、代わりに合成データを共有することだ。
我々は、合成データについて穏やかに紹介し、そのユースケース、未適応のプライバシー問題、そしてその固有の制限を効果的なプライバシー強化技術として論じます。
論文 参考訳(メタデータ) (2023-03-01T16:35:33Z) - Enabling Synthetic Data adoption in regulated domains [1.9512796489908306]
Model-CentricからData-Centricへの転換は、アルゴリズムよりもデータとその品質に重点を置いている。
特に、高度に規制されたシナリオにおける情報のセンシティブな性質を考慮する必要がある。
このようなコンウンドラムをバイパスする巧妙な方法は、生成プロセスから得られたデータであるSynthetic Dataに依存し、実際のデータプロパティを学習する。
論文 参考訳(メタデータ) (2022-04-13T10:53:54Z) - Representative & Fair Synthetic Data [68.8204255655161]
公平性制約を自己監督学習プロセスに組み込むためのフレームワークを提示する。
私たちはuci成人国勢調査データセットの代表者および公正版を作成します。
我々は、代表的かつ公正な合成データを将来有望なビルディングブロックとみなし、歴史的世界ではなく、私たちが生きようとしている世界についてアルゴリズムを教える。
論文 参考訳(メタデータ) (2021-04-07T09:19:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。