Localized Concept Erasure for Text-to-Image Diffusion Models Using Training-Free Gated Low-Rank Adaptation
- URL: http://arxiv.org/abs/2503.12356v2
- Date: Tue, 25 Mar 2025 15:29:45 GMT
- Title: Localized Concept Erasure for Text-to-Image Diffusion Models Using Training-Free Gated Low-Rank Adaptation
- Authors: Byung Hyun Lee, Sungjin Lim, Se Young Chun,
- Abstract summary: Fine-tuning based concept erasing has demonstrated promising results in preventing generation of harmful contents from text-to-image diffusion models.<n>We introduce a framework called localized concept erasure, which allows for the deletion of only the specific area containing the target concept in the image.<n>We propose a training-free approach, dubbed Gated Low-rank adaptation for Concept Erasure (GLoCE), that injects a lightweight module into the diffusion model.
- Score: 12.098673137752861
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Fine-tuning based concept erasing has demonstrated promising results in preventing generation of harmful contents from text-to-image diffusion models by removing target concepts while preserving remaining concepts. To maintain the generation capability of diffusion models after concept erasure, it is necessary to remove only the image region containing the target concept when it locally appears in an image, leaving other regions intact. However, prior arts often compromise fidelity of the other image regions in order to erase the localized target concept appearing in a specific area, thereby reducing the overall performance of image generation. To address these limitations, we first introduce a framework called localized concept erasure, which allows for the deletion of only the specific area containing the target concept in the image while preserving the other regions. As a solution for the localized concept erasure, we propose a training-free approach, dubbed Gated Low-rank adaptation for Concept Erasure (GLoCE), that injects a lightweight module into the diffusion model. GLoCE consists of low-rank matrices and a simple gate, determined only by several generation steps for concepts without training. By directly applying GLoCE to image embeddings and designing the gate to activate only for target concepts, GLoCE can selectively remove only the region of the target concepts, even when target and remaining concepts coexist within an image. Extensive experiments demonstrated GLoCE not only improves the image fidelity to text prompts after erasing the localized target concepts, but also outperforms prior arts in efficacy, specificity, and robustness by large margin and can be extended to mass concept erasure.
Related papers
- Fine-Grained Erasure in Text-to-Image Diffusion-based Foundation Models [56.35484513848296]
FADE (Fine grained Attenuation for Diffusion Erasure) is an adjacency-aware unlearning algorithm for text-to-image generative models.
It removes target concepts with minimal impact on correlated concepts, achieving a 12% improvement in retention performance over state-of-the-art methods.
arXiv Detail & Related papers (2025-03-25T15:49:48Z) - CRCE: Coreference-Retention Concept Erasure in Text-to-Image Diffusion Models [19.074434401274285]
We introduce CRCE, a novel concept erasure framework.
By explicitly modeling coreferential and retained concepts semantically, CRCE enables more precise concept removal.
Experiments demonstrate that CRCE outperforms existing methods on diverse erasure tasks.
arXiv Detail & Related papers (2025-03-18T13:09:01Z) - Continual Unlearning for Foundational Text-to-Image Models without Generalization Erosion [56.35484513848296]
This research introduces continual unlearning', a novel paradigm that enables the targeted removal of multiple specific concepts from foundational generative models.
We propose Decremental Unlearning without Generalization Erosion (DUGE) algorithm which selectively unlearns the generation of undesired concepts.
arXiv Detail & Related papers (2025-03-17T23:17:16Z) - Concept Corrector: Erase concepts on the fly for text-to-image diffusion models [13.065682925662237]
Concept erasure aims to erase any undesired concepts that the models can generate.<n>We propose Concept Corrector, which checks target concepts based on visual features provided by final generated images predicted at certain time steps.<n>In the whole pipeline, our method changes no model parameters and only requires a given target concept as well as the corresponding replacement content.
arXiv Detail & Related papers (2025-02-22T21:53:43Z) - Fantastic Targets for Concept Erasure in Diffusion Models and Where To Find Them [21.386640828092524]
Concept erasure has emerged as a promising technique for mitigating the risk of harmful content generation in diffusion models.<n>We propose the Adaptive Guided Erasure (AGE) method, which emphdynamically selects optimal target concepts tailored to each undesirable concept.<n>Results show that AGE significantly outperforms state-of-the-art erasure methods on preserving unrelated concepts while maintaining effective erasure performance.
arXiv Detail & Related papers (2025-01-31T08:17:23Z) - Concept Replacer: Replacing Sensitive Concepts in Diffusion Models via Precision Localization [48.20360860166279]
Large-scale diffusion models produce high-quality images but often generate unwanted content, such as sexually explicit or violent content.<n>We propose a novel approach for targeted concept replacing in diffusion models, enabling specific concepts to be removed without affecting non-target areas.<n>Our method introduces a dedicated concept localizer for precisely identifying the target concept during the denoising process, trained with few-shot learning to require minimal labeled data.<n>Within the identified region, we introduce a training-free Dual Prompts Cross-Attention (DPCA) module to substitute the target concept, ensuring minimal disruption to surrounding content.
arXiv Detail & Related papers (2024-12-02T08:05:39Z) - Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models [76.39651111467832]
We introduce Reliable and Efficient Concept Erasure (RECE), a novel approach that modifies the model in 3 seconds without necessitating additional fine-tuning.
To mitigate inappropriate content potentially represented by derived embeddings, RECE aligns them with harmless concepts in cross-attention layers.
The derivation and erasure of new representation embeddings are conducted iteratively to achieve a thorough erasure of inappropriate concepts.
arXiv Detail & Related papers (2024-07-17T08:04:28Z) - Unlearning Concepts in Diffusion Model via Concept Domain Correction and Concept Preserving Gradient [20.698305103879232]
We propose a novel concept domain correction framework named textbfDoCo (textbfDomaintextbfCorrection)<n>By aligning the output domains of sensitive and anchor concepts through adversarial training, our approach ensures comprehensive unlearning of target concepts.<n>We also introduce a concept-preserving gradient surgery technique that mitigates conflicting gradient components, thereby preserving the model's utility while unlearning specific concepts.
arXiv Detail & Related papers (2024-05-24T07:47:36Z) - Implicit Concept Removal of Diffusion Models [92.55152501707995]
Text-to-image (T2I) diffusion models often inadvertently generate unwanted concepts such as watermarks and unsafe images.
We present the Geom-Erasing, a novel concept removal method based on the geometric-driven control.
arXiv Detail & Related papers (2023-10-09T17:13:10Z) - Ablating Concepts in Text-to-Image Diffusion Models [57.9371041022838]
Large-scale text-to-image diffusion models can generate high-fidelity images with powerful compositional ability.
These models are typically trained on an enormous amount of Internet data, often containing copyrighted material, licensed images, and personal photos.
We propose an efficient method of ablating concepts in the pretrained model, preventing the generation of a target concept.
arXiv Detail & Related papers (2023-03-23T17:59:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.