論文の概要: Modality-Composable Diffusion Policy via Inference-Time Distribution-level Composition
- arxiv url: http://arxiv.org/abs/2503.12466v1
- Date: Sun, 16 Mar 2025 11:40:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:29:15.616353
- Title: Modality-Composable Diffusion Policy via Inference-Time Distribution-level Composition
- Title(参考訳): 推定時間分布レベル合成によるモダリティ分解可能拡散政策
- Authors: Jiahang Cao, Qiang Zhang, Hanzhong Guo, Jiaxu Wang, Hao Cheng, Renjing Xu,
- Abstract要約: 拡散政策(DP)は政策表現の効果的な方法として注目されている。
個別の視覚的モダリティに基づいて,複数の事前学習DPを活用できる新しいポリシー構成法を提案する。
適応性と性能を両立させるMCDPの可能性を示す。
- 参考スコア(独自算出の注目度): 10.777232453153568
- License:
- Abstract: Diffusion Policy (DP) has attracted significant attention as an effective method for policy representation due to its capacity to model multi-distribution dynamics. However, current DPs are often based on a single visual modality (e.g., RGB or point cloud), limiting their accuracy and generalization potential. Although training a generalized DP capable of handling heterogeneous multimodal data would enhance performance, it entails substantial computational and data-related costs. To address these challenges, we propose a novel policy composition method: by leveraging multiple pre-trained DPs based on individual visual modalities, we can combine their distributional scores to form a more expressive Modality-Composable Diffusion Policy (MCDP), without the need for additional training. Through extensive empirical experiments on the RoboTwin dataset, we demonstrate the potential of MCDP to improve both adaptability and performance. This exploration aims to provide valuable insights into the flexible composition of existing DPs, facilitating the development of generalizable cross-modality, cross-domain, and even cross-embodiment policies. Our code is open-sourced at https://github.com/AndyCao1125/MCDP.
- Abstract(参考訳): 拡散政策 (DP) は多分散力学をモデル化する能力により, 政策表現の効果的な方法として注目されている。
しかし、現在のDPはしばしば単一の視覚的モダリティ(例えば、RGBや点クラウド)に基づいており、精度と一般化の可能性を制限する。
不均一なマルチモーダルデータを処理できる一般化DPのトレーニングでは性能が向上するが、かなりの計算コストとデータ関連コストが伴う。
これらの課題に対処するために、我々は、個別の視覚的モダリティに基づいて事前学習された複数のDPを活用することで、より表現力のあるモダリティ・コンポーザブル・ディフュージョン・ポリシー(MCDP)を形成するために、それらの分布スコアを組み合わせることができる新しいポリシー構成法を提案する。
RoboTwinデータセットの広範な実験を通じて、適応性と性能の両方を改善するためのMCDPの可能性を示す。
この調査は、既存のDPの柔軟な構成に関する貴重な洞察を提供することを目的としており、一般化可能なクロスモダリティ、クロスドメイン、さらにはクロスエボデーメントポリシーの開発を促進することを目的としている。
私たちのコードはhttps://github.com/AndyCao1125/MCDPでオープンソース化されています。
関連論文リスト
- IMLE Policy: Fast and Sample Efficient Visuomotor Policy Learning via Implicit Maximum Likelihood Estimation [3.7584322469996896]
IMLEポリシーは、Implicit Maximum Likelihood Estimation (IMLE)に基づく新しい行動クローニング手法である
複雑なマルチモーダルな振る舞いを学ぶ上で、ベースラインメソッドのパフォーマンスに合わせるために、最小限のデモから効果的に学習し、平均で38%のデータを必要とします。
シミュレーションおよび実環境における多様な操作タスクに対するアプローチを検証し、データ制約下で複雑な振る舞いをキャプチャする能力を示す。
論文 参考訳(メタデータ) (2025-02-17T23:22:49Z) - On-the-fly Modulation for Balanced Multimodal Learning [53.616094855778954]
マルチモーダル学習は、異なるモーダルからの情報を統合することでモデル性能を向上させることが期待されている。
広く使われている共同トレーニング戦略は、不均衡で最適化されていないユニモーダル表現につながる。
そこで本研究では,OGM(On-the-fly Prediction Modulation)とOGM(On-the-fly Gradient Modulation)の戦略を提案する。
論文 参考訳(メタデータ) (2024-10-15T13:15:50Z) - Learning Multimodal Behaviors from Scratch with Diffusion Policy Gradient [26.675822002049372]
Deep Diffusion Policy Gradient (DDiffPG)は、マルチモーダルポリシーから学習する新しいアクター批判アルゴリズムである。
DDiffPGはマルチモーダルトレーニングバッチを形成し、モード固有のQ-ラーニングを使用して、RL目的の固有の欲求を緩和する。
さらに,本手法では,学習モードを明示的に制御するために,モード固有の埋め込みにポリシーを条件付けることができる。
論文 参考訳(メタデータ) (2024-06-02T09:32:28Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
実世界のアプリケーションでは,音声およびビデオデータに基づくマルチモーダル感情認識が重要である。
近年の手法は、強力なマルチモーダルエンコーダの事前学習に自己教師付き学習(SSL)の進歩を活用することに重点を置いている。
SSL-pre-trained disimodal encoders を用いて,この問題に対する異なる視点とマルチモーダル DFER の性能向上について検討する。
論文 参考訳(メタデータ) (2024-04-13T13:39:26Z) - Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts
in Underspecified Visual Tasks [92.32670915472099]
拡散確率モデル(DPM)を用いた合成カウンターファクトの生成を利用したアンサンブルの多様化フレームワークを提案する。
拡散誘導型分散化は,データ収集を必要とする従来の手法に匹敵するアンサンブル多様性を達成し,ショートカットからの注意を回避できることを示す。
論文 参考訳(メタデータ) (2023-10-03T17:37:52Z) - Policy Representation via Diffusion Probability Model for Reinforcement
Learning [67.56363353547775]
拡散確率モデルを用いて政策表現の理論的基礎を構築する。
本稿では,拡散政策の多様性を理解するための理論を提供する,拡散政策の収束保証について述べる。
本研究では,Diffusion POlicyを用いたモデルフリーオンラインRLの実装であるDIPOを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:23:41Z) - Deep Multimodal Fusion for Generalizable Person Re-identification [15.250738959921872]
DMF(ディープ・マルチモーダル・フュージョン)は、個人再識別タスクの一般的なシナリオのためのディープ・マルチモーダル・フュージョン・ネットワークである。
事前学習段階における特徴表現学習を支援するために、リッチな意味知識が導入される。
実世界の分散アライメントのための事前訓練されたモデルを微調整するために、現実的なデータセットが採用されている。
論文 参考訳(メタデータ) (2022-11-02T07:42:48Z) - Diffusion Policies as an Expressive Policy Class for Offline
Reinforcement Learning [70.20191211010847]
オフライン強化学習(RL)は、以前に収集した静的データセットを使って最適なポリシーを学ぶことを目的としている。
本稿では,条件付き拡散モデルを用いたディフュージョンQ-ラーニング(Diffusion-QL)を提案する。
本手法はD4RLベンチマークタスクの大部分において最先端の性能を実現することができることを示す。
論文 参考訳(メタデータ) (2022-08-12T09:54:11Z) - Latent-Variable Advantage-Weighted Policy Optimization for Offline RL [70.01851346635637]
オフラインの強化学習メソッドは、新しいトランジションを環境に問い合わせる必要なしに、事前にコンパイルされたデータセットから学習ポリシーを保証します。
実際には、オフラインデータセットは、しばしば異種、すなわち様々なシナリオで収集される。
より広範な政策分布を表現できる潜在変数ポリシーを活用することを提案する。
提案手法は,次回のオフライン強化学習法の性能を,異種データセット上で49%向上させる。
論文 参考訳(メタデータ) (2022-03-16T21:17:03Z) - DeepAveragers: Offline Reinforcement Learning by Solving Derived Non-Parametric MDPs [33.07594285100664]
静的な経験データセットから得られる有限表現型MDPを最適に解くことに基づくオフライン強化学習(RL)へのアプローチについて検討する。
我々の主な貢献は、Deep Averagers with Costs MDP (DAC-MDP)を導入し、オフラインRLに対するソリューションを検討することである。
論文 参考訳(メタデータ) (2020-10-18T00:11:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。