論文の概要: A Plug-and-Play Learning-based IMU Bias Factor for Robust Visual-Inertial Odometry
- arxiv url: http://arxiv.org/abs/2503.12527v1
- Date: Sun, 16 Mar 2025 14:45:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:30:59.157801
- Title: A Plug-and-Play Learning-based IMU Bias Factor for Robust Visual-Inertial Odometry
- Title(参考訳): プラグイン・アンド・プレイ型視覚慣性オドメトリーのためのIMUバイアス因子
- Authors: Yang Yi, Kunqing Wang, Jinpu Zhang, Zhen Tan, Xiangke Wang, Hui Shen, Dewen Hu,
- Abstract要約: 低コスト慣性計測装置(IMU)のバイアスは、視覚慣性オドメトリー(VIO)の性能に影響を及ぼす重要な要因である。
Inertial Prior Network (IPNet) を特徴とする新しいプラグイン・アンド・プレイ・フレームワークを提案する。
- 参考スコア(独自算出の注目度): 15.724874429545824
- License:
- Abstract: The bias of low-cost Inertial Measurement Units (IMU) is a critical factor affecting the performance of Visual-Inertial Odometry (VIO). In particular, when visual tracking encounters errors, the optimized bias results may deviate significantly from the true values, adversely impacting the system's stability and localization precision. In this paper, we propose a novel plug-and-play framework featuring the Inertial Prior Network (IPNet), which is designed to accurately estimate IMU bias. Recognizing the substantial impact of initial bias errors in low-cost inertial devices on system performance, our network directly leverages raw IMU data to estimate the mean bias, eliminating the dependency on historical estimates in traditional recursive predictions and effectively preventing error propagation. Furthermore, we introduce an iterative approach to calculate the mean value of the bias for network training, addressing the lack of bias labels in many visual-inertial datasets. The framework is evaluated on two public datasets and one self-collected dataset. Extensive experiments demonstrate that our method significantly enhances both localization precision and robustness, with the ATE-RMSE metric improving on average by 46\%. The source code and video will be available at \textcolor{red}{https://github.com/yiyscut/VIO-IPNet.git}.
- Abstract(参考訳): 低コスト慣性計測装置(IMU)のバイアスは、視覚慣性オドメトリー(VIO)の性能に影響を及ぼす重要な要因である。
特に、視覚的トラッキングがエラーに遭遇した場合、最適化されたバイアス結果は真の値から大きく逸脱し、システムの安定性とローカライゼーション精度に悪影響を及ぼす可能性がある。
本稿では,IMUバイアスを正確に推定するために,IPNet(Inertial Prior Network)を特徴とする新しいプラグイン・アンド・プレイ・フレームワークを提案する。
低コストの慣性デバイスにおける初期バイアスエラーがシステム性能に与える影響を認識し,本ネットワークは生のIMUデータを直接利用して平均バイアスを推定し,従来の再帰的予測における履歴推定への依存性を排除し,エラーの伝播を効果的に防止する。
さらに、ネットワークトレーニングにおけるバイアスの平均値を計算するための反復的アプローチを導入し、多くのビジュアル慣性データセットにおけるバイアスラベルの欠如に対処する。
このフレームワークは、2つの公開データセットと1つの自己収集データセットで評価される。
広範囲な実験により,本手法は局所化精度とロバスト性の両方を著しく向上し,ATE-RMSE測定値は平均46.5%向上した。
ソースコードとビデオは、textcolor{red}{https://github.com/yiyscut/VIO-IPNet.git}で入手できる。
関連論文リスト
- Rethinking Relation Extraction: Beyond Shortcuts to Generalization with a Debiased Benchmark [53.876493664396506]
ベンチマークは、機械学習アルゴリズムのパフォーマンスの評価、比較の促進、優れたソリューションの特定に不可欠である。
本稿では,関係抽出タスクにおけるエンティティバイアスの問題に対処する。
本稿では,エンティティの代替によって,エンティティ参照と関係型との擬似相関を破る不偏関係抽出ベンチマークDREBを提案する。
DREBの新たなベースラインを確立するために,データレベルとモデルトレーニングレベルを組み合わせたデバイアス手法であるMixDebiasを導入する。
論文 参考訳(メタデータ) (2025-01-02T17:01:06Z) - An Investigation on Machine Learning Predictive Accuracy Improvement and Uncertainty Reduction using VAE-based Data Augmentation [2.517043342442487]
深層生成学習は、特定のMLモデルを使用して、既存のデータの基盤となる分布を学習し、実際のデータに似た合成サンプルを生成する。
本研究では,変分オートエンコーダ(VAE)を用いた深部生成モデルを用いて,データ拡張の有効性を評価することを目的とする。
本研究では,拡張データを用いてトレーニングしたディープニューラルネットワーク(DNN)モデルの予測において,データ拡張が精度の向上につながるかどうかを検討した。
論文 参考訳(メタデータ) (2024-10-24T18:15:48Z) - Fair CoVariance Neural Networks [34.68621550644667]
本稿では,Fair CoVariance Neural Networks (FVNN) を提案する。
我々は,FVNNが類似のPCAアプローチよりも本質的に公平であることを証明する。
論文 参考訳(メタデータ) (2024-09-13T06:24:18Z) - Training Unbiased Diffusion Models From Biased Dataset [18.09610829650175]
本稿では,拡散モデルのバイアスを軽減するために,時間依存性の重要度再重み付けを提案する。
時間依存密度比が従来の手法よりも精度が高いことを示す。
スコアマッチングに直接適用することは難解であるが、再重み付けとスコア補正の両方に時間依存密度比を用いることで、目的関数の抽出可能な形式に繋がることがわかった。
論文 参考訳(メタデータ) (2024-03-02T12:06:42Z) - Marginal Debiased Network for Fair Visual Recognition [59.05212866862219]
本稿では,デバイアス表現を学習するための新しい限界脱バイアスネットワーク(MDN)を提案する。
我々のMDNは、表現不足のサンプルに対して顕著な性能を達成できる。
論文 参考訳(メタデータ) (2024-01-04T08:57:09Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - Increasing Fairness in Predictions Using Bias Parity Score Based Loss
Function Regularization [0.8594140167290099]
従来のバイナリクロスエントロピーに基づく精度損失と合わせて使用する正則化成分の公平性向上のファミリを導入する。
我々は、人口統計に基づく成人所得データセットと同様に、再分配予測タスクの文脈に展開する。
論文 参考訳(メタデータ) (2021-11-05T17:42:33Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
オフラインで収集されたデータセット(観測データ)を組み込んで、オンライン環境でのサンプル効率を改善する方法について検討する。
提案手法は,観測データを効率よく組み込んだ,分解された楽観的値反復 (DOVI) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-22T14:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。