EmoBipedNav: Emotion-aware Social Navigation for Bipedal Robots with Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2503.12538v1
- Date: Sun, 16 Mar 2025 15:11:57 GMT
- Title: EmoBipedNav: Emotion-aware Social Navigation for Bipedal Robots with Deep Reinforcement Learning
- Authors: Wei Zhu, Abirath Raju, Abdulaziz Shamsah, Anqi Wu, Seth Hutchinson, Ye Zhao,
- Abstract summary: This study presents an emotion-aware navigation framework --BipedNav -- for bipedal robots walking in socially interactive environments.<n>The proposed framework incorporates full-order dynamics and locomotion constraints during training, effectively accounting for tracking errors and restrictions of the locomotion controller.
- Score: 11.622119393400341
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents an emotion-aware navigation framework -- EmoBipedNav -- using deep reinforcement learning (DRL) for bipedal robots walking in socially interactive environments. The inherent locomotion constraints of bipedal robots challenge their safe maneuvering capabilities in dynamic environments. When combined with the intricacies of social environments, including pedestrian interactions and social cues, such as emotions, these challenges become even more pronounced. To address these coupled problems, we propose a two-stage pipeline that considers both bipedal locomotion constraints and complex social environments. Specifically, social navigation scenarios are represented using sequential LiDAR grid maps (LGMs), from which we extract latent features, including collision regions, emotion-related discomfort zones, social interactions, and the spatio-temporal dynamics of evolving environments. The extracted features are directly mapped to the actions of reduced-order models (ROMs) through a DRL architecture. Furthermore, the proposed framework incorporates full-order dynamics and locomotion constraints during training, effectively accounting for tracking errors and restrictions of the locomotion controller while planning the trajectory with ROMs. Comprehensive experiments demonstrate that our approach exceeds both model-based planners and DRL-based baselines. The hardware videos and open-source code are available at https://gatech-lidar.github.io/emobipednav.github.io/.
Related papers
- Humanoid Whole-Body Locomotion on Narrow Terrain via Dynamic Balance and Reinforcement Learning [54.26816599309778]
We propose a novel whole-body locomotion algorithm based on dynamic balance and Reinforcement Learning (RL)
Specifically, we introduce a dynamic balance mechanism by leveraging an extended measure of Zero-Moment Point (ZMP)-driven rewards and task-driven rewards in a whole-body actor-critic framework.
Experiments conducted on a full-sized Unitree H1-2 robot verify the ability of our method to maintain balance on extremely narrow terrains.
arXiv Detail & Related papers (2025-02-24T14:53:45Z) - An Open-source Sim2Real Approach for Sensor-independent Robot Navigation in a Grid [0.0]
We bridge the gap between a trained agent in a simulated environment and its real-world implementation in navigating a robot in a similar setting.<n>Specifically, we focus on navigating a quadruped robot in a real-world grid-like environment inspired by the Gymnasium Frozen Lake.
arXiv Detail & Related papers (2024-11-05T20:18:29Z) - Hyp2Nav: Hyperbolic Planning and Curiosity for Crowd Navigation [58.574464340559466]
We advocate for hyperbolic learning to enable crowd navigation and we introduce Hyp2Nav.
Hyp2Nav leverages the intrinsic properties of hyperbolic geometry to better encode the hierarchical nature of decision-making processes in navigation tasks.
We propose a hyperbolic policy model and a hyperbolic curiosity module that results in effective social navigation, best success rates, and returns across multiple simulation settings.
arXiv Detail & Related papers (2024-07-18T14:40:33Z) - Structured Graph Network for Constrained Robot Crowd Navigation with Low Fidelity Simulation [10.201765067255147]
We investigate the feasibility of deploying reinforcement learning (RL) policies for constrained crowd navigation using a low-fidelity simulator.
We introduce a representation of the dynamic environment, separating human and obstacle representations.
This representation enables RL policies trained in a low-fidelity simulator to deploy in real world with a reduced sim2real gap.
arXiv Detail & Related papers (2024-05-27T04:53:09Z) - Learning Robust Autonomous Navigation and Locomotion for Wheeled-Legged Robots [50.02055068660255]
Navigating urban environments poses unique challenges for robots, necessitating innovative solutions for locomotion and navigation.
This work introduces a fully integrated system comprising adaptive locomotion control, mobility-aware local navigation planning, and large-scale path planning within the city.
Using model-free reinforcement learning (RL) techniques and privileged learning, we develop a versatile locomotion controller.
Our controllers are integrated into a large-scale urban navigation system and validated by autonomous, kilometer-scale navigation missions conducted in Zurich, Switzerland, and Seville, Spain.
arXiv Detail & Related papers (2024-05-03T00:29:20Z) - SOCIALGYM 2.0: Simulator for Multi-Agent Social Robot Navigation in
Shared Human Spaces [13.116180950665962]
SocialGym 2 is a multi-agent navigation simulator for social robots.
It replicates real-world dynamics in complex environments, including doorways, hallways, intersections, and roundabouts.
SocialGym 2 offers an accessible python interface that integrates with a navigation stack through ROS messaging.
arXiv Detail & Related papers (2023-03-09T21:21:05Z) - Learning to Walk by Steering: Perceptive Quadrupedal Locomotion in
Dynamic Environments [25.366480092589022]
A quadrupedal robot must exhibit robust and agile walking behaviors in response to environmental clutter and moving obstacles.
We present a hierarchical learning framework, named PRELUDE, which decomposes the problem of perceptive locomotion into high-level decision-making.
We demonstrate the effectiveness of our approach in simulation and with hardware experiments.
arXiv Detail & Related papers (2022-09-19T17:55:07Z) - Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation [92.66286342108934]
Social navigation is the capability of an autonomous agent, such as a robot, to navigate in a'socially compliant' manner in the presence of other intelligent agents such as humans.
Our dataset contains 8.7 hours, 138 trajectories, 25 miles of socially compliant, human teleoperated driving demonstrations.
arXiv Detail & Related papers (2022-03-28T19:09:11Z) - Intention Aware Robot Crowd Navigation with Attention-Based Interaction
Graph [3.8461692052415137]
We study the problem of safe and intention-aware robot navigation in dense and interactive crowds.
We propose a novel recurrent graph neural network with attention mechanisms to capture heterogeneous interactions among agents.
We demonstrate that our method enables the robot to achieve good navigation performance and non-invasiveness in challenging crowd navigation scenarios.
arXiv Detail & Related papers (2022-03-03T16:26:36Z) - COCOI: Contact-aware Online Context Inference for Generalizable
Non-planar Pushing [87.7257446869134]
General contact-rich manipulation problems are long-standing challenges in robotics.
Deep reinforcement learning has shown great potential in solving robot manipulation tasks.
We propose COCOI, a deep RL method that encodes a context embedding of dynamics properties online.
arXiv Detail & Related papers (2020-11-23T08:20:21Z) - Learning Quadrupedal Locomotion over Challenging Terrain [68.51539602703662]
Legged locomotion can dramatically expand the operational domains of robotics.
Conventional controllers for legged locomotion are based on elaborate state machines that explicitly trigger the execution of motion primitives and reflexes.
Here we present a radically robust controller for legged locomotion in challenging natural environments.
arXiv Detail & Related papers (2020-10-21T19:11:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.