Hyp2Nav: Hyperbolic Planning and Curiosity for Crowd Navigation
- URL: http://arxiv.org/abs/2407.13567v3
- Date: Fri, 6 Sep 2024 10:16:17 GMT
- Title: Hyp2Nav: Hyperbolic Planning and Curiosity for Crowd Navigation
- Authors: Guido Maria D'Amely di Melendugno, Alessandro Flaborea, Pascal Mettes, Fabio Galasso,
- Abstract summary: We advocate for hyperbolic learning to enable crowd navigation and we introduce Hyp2Nav.
Hyp2Nav leverages the intrinsic properties of hyperbolic geometry to better encode the hierarchical nature of decision-making processes in navigation tasks.
We propose a hyperbolic policy model and a hyperbolic curiosity module that results in effective social navigation, best success rates, and returns across multiple simulation settings.
- Score: 58.574464340559466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous robots are increasingly becoming a strong fixture in social environments. Effective crowd navigation requires not only safe yet fast planning, but should also enable interpretability and computational efficiency for working in real-time on embedded devices. In this work, we advocate for hyperbolic learning to enable crowd navigation and we introduce Hyp2Nav. Different from conventional reinforcement learning-based crowd navigation methods, Hyp2Nav leverages the intrinsic properties of hyperbolic geometry to better encode the hierarchical nature of decision-making processes in navigation tasks. We propose a hyperbolic policy model and a hyperbolic curiosity module that results in effective social navigation, best success rates, and returns across multiple simulation settings, using up to 6 times fewer parameters than competitor state-of-the-art models. With our approach, it becomes even possible to obtain policies that work in 2-dimensional embedding spaces, opening up new possibilities for low-resource crowd navigation and model interpretability. Insightfully, the internal hyperbolic representation of Hyp2Nav correlates with how much attention the robot pays to the surrounding crowds, e.g. due to multiple people occluding its pathway or to a few of them showing colliding plans, rather than to its own planned route. The code is available at https://github.com/GDam90/hyp2nav.
Related papers
- NoMaD: Goal Masked Diffusion Policies for Navigation and Exploration [57.15811390835294]
This paper describes how we can train a single unified diffusion policy to handle both goal-directed navigation and goal-agnostic exploration.
We show that this unified policy results in better overall performance when navigating to visually indicated goals in novel environments.
Our experiments, conducted on a real-world mobile robot platform, show effective navigation in unseen environments in comparison with five alternative methods.
arXiv Detail & Related papers (2023-10-11T21:07:14Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments.
We propose ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments.
ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets.
arXiv Detail & Related papers (2023-04-06T13:07:17Z) - SOCIALGYM 2.0: Simulator for Multi-Agent Social Robot Navigation in
Shared Human Spaces [13.116180950665962]
SocialGym 2 is a multi-agent navigation simulator for social robots.
It replicates real-world dynamics in complex environments, including doorways, hallways, intersections, and roundabouts.
SocialGym 2 offers an accessible python interface that integrates with a navigation stack through ROS messaging.
arXiv Detail & Related papers (2023-03-09T21:21:05Z) - Gesture2Path: Imitation Learning for Gesture-aware Navigation [54.570943577423094]
We present Gesture2Path, a novel social navigation approach that combines image-based imitation learning with model-predictive control.
We deploy our method on real robots and showcase the effectiveness of our approach for the four gestures-navigation scenarios.
arXiv Detail & Related papers (2022-09-19T23:05:36Z) - Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation [92.66286342108934]
Social navigation is the capability of an autonomous agent, such as a robot, to navigate in a'socially compliant' manner in the presence of other intelligent agents such as humans.
Our dataset contains 8.7 hours, 138 trajectories, 25 miles of socially compliant, human teleoperated driving demonstrations.
arXiv Detail & Related papers (2022-03-28T19:09:11Z) - Intention Aware Robot Crowd Navigation with Attention-Based Interaction
Graph [3.8461692052415137]
We study the problem of safe and intention-aware robot navigation in dense and interactive crowds.
We propose a novel recurrent graph neural network with attention mechanisms to capture heterogeneous interactions among agents.
We demonstrate that our method enables the robot to achieve good navigation performance and non-invasiveness in challenging crowd navigation scenarios.
arXiv Detail & Related papers (2022-03-03T16:26:36Z) - Coupling Vision and Proprioception for Navigation of Legged Robots [65.59559699815512]
We exploit the complementary strengths of vision and proprioception to achieve point goal navigation in a legged robot.
We show superior performance compared to wheeled robot (LoCoBot) baselines.
We also show the real-world deployment of our system on a quadruped robot with onboard sensors and compute.
arXiv Detail & Related papers (2021-12-03T18:59:59Z) - Learning Synthetic to Real Transfer for Localization and Navigational
Tasks [7.019683407682642]
Navigation is at the crossroad of multiple disciplines, it combines notions of computer vision, robotics and control.
This work aimed at creating, in a simulation, a navigation pipeline whose transfer to the real world could be done with as few efforts as possible.
To design the navigation pipeline four main challenges arise; environment, localization, navigation and planning.
arXiv Detail & Related papers (2020-11-20T08:37:03Z) - Decentralized Structural-RNN for Robot Crowd Navigation with Deep
Reinforcement Learning [4.724825031148412]
We propose structural-Recurrent Neural Network (DS-RNN), a novel network that reasons about spatial and temporal relationships for robot decision making in crowd navigation.
We demonstrate that our model outperforms previous methods in challenging crowd navigation scenarios.
We successfully transfer the policy learned in the simulator to a real-world TurtleBot 2i.
arXiv Detail & Related papers (2020-11-09T23:15:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.