BFANet: Revisiting 3D Semantic Segmentation with Boundary Feature Analysis
- URL: http://arxiv.org/abs/2503.12539v1
- Date: Sun, 16 Mar 2025 15:13:11 GMT
- Title: BFANet: Revisiting 3D Semantic Segmentation with Boundary Feature Analysis
- Authors: Weiguang Zhao, Rui Zhang, Qiufeng Wang, Guangliang Cheng, Kaizhu Huang,
- Abstract summary: We revisit 3D semantic segmentation through a more granular lens, shedding light on subtle complexities that are typically overshadowed by broader performance metrics.<n>We introduce an innovative 3D semantic segmentation network called BFANet that incorporates detailed analysis of semantic boundary features.
- Score: 33.53327976669034
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: 3D semantic segmentation plays a fundamental and crucial role to understand 3D scenes. While contemporary state-of-the-art techniques predominantly concentrate on elevating the overall performance of 3D semantic segmentation based on general metrics (e.g. mIoU, mAcc, and oAcc), they unfortunately leave the exploration of challenging regions for segmentation mostly neglected. In this paper, we revisit 3D semantic segmentation through a more granular lens, shedding light on subtle complexities that are typically overshadowed by broader performance metrics. Concretely, we have delineated 3D semantic segmentation errors into four comprehensive categories as well as corresponding evaluation metrics tailored to each. Building upon this categorical framework, we introduce an innovative 3D semantic segmentation network called BFANet that incorporates detailed analysis of semantic boundary features. First, we design the boundary-semantic module to decouple point cloud features into semantic and boundary features, and fuse their query queue to enhance semantic features with attention. Second, we introduce a more concise and accelerated boundary pseudo-label calculation algorithm, which is 3.9 times faster than the state-of-the-art, offering compatibility with data augmentation and enabling efficient computation in training. Extensive experiments on benchmark data indicate the superiority of our BFANet model, confirming the significance of emphasizing the four uniquely designed metrics. Code is available at https://github.com/weiguangzhao/BFANet.
Related papers
- Bayesian Self-Training for Semi-Supervised 3D Segmentation [59.544558398992386]
3D segmentation is a core problem in computer vision.
densely labeling 3D point clouds to employ fully-supervised training remains too labor intensive and expensive.
Semi-supervised training provides a more practical alternative, where only a small set of labeled data is given, accompanied by a larger unlabeled set.
arXiv Detail & Related papers (2024-09-12T14:54:31Z) - Augmented Efficiency: Reducing Memory Footprint and Accelerating Inference for 3D Semantic Segmentation through Hybrid Vision [9.96433151449016]
This paper introduces a novel approach to 3D semantic segmentation, distinguished by incorporating a hybrid blend of 2D and 3D computer vision techniques.
We conduct 2D semantic segmentation on RGB images linked to 3D point clouds and extend the results to 3D using an extrusion technique for specific class labels.
This model serves as the current state-of-the-art 3D semantic segmentation model on the KITTI-360 dataset.
arXiv Detail & Related papers (2024-07-23T00:04:10Z) - SegPoint: Segment Any Point Cloud via Large Language Model [62.69797122055389]
We propose a model, called SegPoint, to produce point-wise segmentation masks across a diverse range of tasks.
SegPoint is the first model to address varied segmentation tasks within a single framework.
arXiv Detail & Related papers (2024-07-18T17:58:03Z) - Segment Any 3D Object with Language [58.471327490684295]
We introduce Segment any 3D Object with LanguagE (SOLE), a semantic geometric and-aware visual-language learning framework with strong generalizability.
Specifically, we propose a multimodal fusion network to incorporate multimodal semantics in both backbone and decoder.
Our SOLE outperforms previous methods by a large margin on ScanNetv2, ScanNet200, and Replica benchmarks.
arXiv Detail & Related papers (2024-04-02T17:59:10Z) - SAI3D: Segment Any Instance in 3D Scenes [68.57002591841034]
We introduce SAI3D, a novel zero-shot 3D instance segmentation approach.
Our method partitions a 3D scene into geometric primitives, which are then progressively merged into 3D instance segmentations.
Empirical evaluations on ScanNet, Matterport3D and the more challenging ScanNet++ datasets demonstrate the superiority of our approach.
arXiv Detail & Related papers (2023-12-17T09:05:47Z) - A Review and A Robust Framework of Data-Efficient 3D Scene Parsing with
Traditional/Learned 3D Descriptors [10.497309421830671]
Existing state-of-the-art 3D point cloud understanding methods merely perform well in a fully supervised manner.
This work presents a general and simple framework to tackle point cloud understanding when labels are limited.
arXiv Detail & Related papers (2023-12-03T02:51:54Z) - S3Net: 3D LiDAR Sparse Semantic Segmentation Network [1.330528227599978]
S3Net is a novel convolutional neural network for LiDAR point cloud semantic segmentation.
It adopts an encoder-decoder backbone that consists of Sparse Intra-channel Attention Module (SIntraAM) and Sparse Inter-channel Attention Module (SInterAM)
arXiv Detail & Related papers (2021-03-15T22:15:24Z) - Three Ways to Improve Semantic Segmentation with Self-Supervised Depth
Estimation [90.87105131054419]
We present a framework for semi-supervised semantic segmentation, which is enhanced by self-supervised monocular depth estimation from unlabeled image sequences.
We validate the proposed model on the Cityscapes dataset, where all three modules demonstrate significant performance gains.
arXiv Detail & Related papers (2020-12-19T21:18:03Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
Point cloud semantic segmentation plays an essential role in autonomous driving.
Current 3D semantic segmentation networks focus on convolutional architectures that perform great for well represented classes.
We propose a novel Aware 3D Semantic Detection (DASS) framework that explicitly leverages localization features from an auxiliary 3D object detection task.
arXiv Detail & Related papers (2020-09-22T14:17:40Z) - Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with
Deep Metric Learning [5.699350798684963]
We propose a simple, yet efficient algorithm for 3D instance segmentation using deep metric learning.
For high-level intelligent tasks from a large scale scene, 3D instance segmentation recognizes individual instances of objects.
We demonstrate the state-of-the-art performance of our algorithm in the ScanNet 3D instance segmentation benchmark on AP score.
arXiv Detail & Related papers (2020-07-07T02:17:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.