MTGS: Multi-Traversal Gaussian Splatting
- URL: http://arxiv.org/abs/2503.12552v3
- Date: Sat, 22 Mar 2025 07:22:52 GMT
- Title: MTGS: Multi-Traversal Gaussian Splatting
- Authors: Tianyu Li, Yihang Qiu, Zhenhua Wu, Carl Lindström, Peng Su, Matthias Nießner, Hongyang Li,
- Abstract summary: Multi-traversal data provides multiple viewpoints for scene reconstruction within a road block.<n>We propose Multi-Traversal Gaussian Splatting (MTGS), a novel approach that reconstructs high-quality driving scenes from arbitrarily collected multi-traversal data.<n>Our results demonstrate that MTGS improves LPIPS by 23.5% and geometry accuracy by 46.3% compared to single-traversal baselines.
- Score: 51.22657444433942
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multi-traversal data, commonly collected through daily commutes or by self-driving fleets, provides multiple viewpoints for scene reconstruction within a road block. This data offers significant potential for high-quality novel view synthesis, which is crucial for applications such as autonomous vehicle simulators. However, inherent challenges in multi-traversal data often result in suboptimal reconstruction quality, including variations in appearance and the presence of dynamic objects. To address these issues, we propose Multi-Traversal Gaussian Splatting (MTGS), a novel approach that reconstructs high-quality driving scenes from arbitrarily collected multi-traversal data by modeling a shared static geometry while separately handling dynamic elements and appearance variations. Our method employs a multi-traversal dynamic scene graph with a shared static node and traversal-specific dynamic nodes, complemented by color correction nodes with learnable spherical harmonics coefficient residuals. This approach enables high-fidelity novel view synthesis and provides flexibility to navigate any viewpoint. We conduct extensive experiments on a large-scale driving dataset, nuPlan, with multi-traversal data. Our results demonstrate that MTGS improves LPIPS by 23.5% and geometry accuracy by 46.3% compared to single-traversal baselines. The code and data would be available to the public.
Related papers
- LargeAD: Large-Scale Cross-Sensor Data Pretraining for Autonomous Driving [52.83707400688378]
LargeAD is a versatile and scalable framework designed for large-scale 3D pretraining across diverse real-world driving datasets.<n>Our framework leverages VFMs to extract semantically rich superpixels from 2D images, which are aligned with LiDAR point clouds to generate high-quality contrastive samples.<n>Our approach delivers significant performance improvements over state-of-the-art methods in both linear probing and fine-tuning tasks for both LiDAR-based segmentation and object detection.
arXiv Detail & Related papers (2025-01-07T18:59:59Z) - A Framework for Fine-Tuning LLMs using Heterogeneous Feedback [69.51729152929413]
We present a framework for fine-tuning large language models (LLMs) using heterogeneous feedback.
First, we combine the heterogeneous feedback data into a single supervision format, compatible with methods like SFT and RLHF.
Next, given this unified feedback dataset, we extract a high-quality and diverse subset to obtain performance increases.
arXiv Detail & Related papers (2024-08-05T23:20:32Z) - Generalizable Implicit Neural Representation As a Universal Spatiotemporal Traffic Data Learner [46.866240648471894]
Spatiotemporal Traffic Data (STTD) measures the complex dynamical behaviors of the multiscale transportation system.
We present a novel paradigm to address the STTD learning problem by parameterizing STTD as an implicit neural representation.
We validate its effectiveness through extensive experiments in real-world scenarios, showcasing applications from corridor to network scales.
arXiv Detail & Related papers (2024-06-13T02:03:22Z) - Spatiotemporal Implicit Neural Representation as a Generalized Traffic Data Learner [46.866240648471894]
Spatiotemporal Traffic Data (STTD) measures the complex dynamical behaviors of the multiscale transportation system.
We present a novel paradigm to address the STTD learning problem by parameterizing STTD as an implicit neural representation.
We validate its effectiveness through extensive experiments in real-world scenarios, showcasing applications from corridor to network scales.
arXiv Detail & Related papers (2024-05-06T06:23:06Z) - UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction [93.77809355002591]
We introduce UniTraj, a comprehensive framework that unifies various datasets, models, and evaluation criteria.
We conduct extensive experiments and find that model performance significantly drops when transferred to other datasets.
We provide insights into dataset characteristics to explain these findings.
arXiv Detail & Related papers (2024-03-22T10:36:50Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training [44.790636524264]
Point Prompt Training is a novel framework for multi-dataset synergistic learning in the context of 3D representation learning.
It can overcome the negative transfer associated with synergistic learning and produce generalizable representations.
It achieves state-of-the-art performance on each dataset using a single weight-shared model with supervised multi-dataset training.
arXiv Detail & Related papers (2023-08-18T17:59:57Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
This paper presents a novel approach that views each tracklet as a continuous stream.
At each timestamp, only the current frame is fed into the network to interact with multi-frame historical features stored in a memory bank.
To enhance the utilization of multi-frame features for robust tracking, a contrastive sequence enhancement strategy is proposed.
arXiv Detail & Related papers (2023-03-14T02:58:27Z) - Eagle: Large-Scale Learning of Turbulent Fluid Dynamics with Mesh
Transformers [23.589419066824306]
Estimating fluid dynamics is a notoriously hard problem to solve.
We introduce a new model, method and benchmark for the problem.
We show that our transformer outperforms state-of-the-art performance on, both, existing synthetic and real datasets.
arXiv Detail & Related papers (2023-02-16T12:59:08Z) - Normal Transformer: Extracting Surface Geometry from LiDAR Points Enhanced by Visual Semantics [7.507853813361308]
We introduce a multi-modal technique that leverages 3D point clouds and 2D colour images obtained from LiDAR and camera sensors for surface normal estimation.<n>We present a novel transformer-based neural network architecture that proficiently fuses visual semantic and 3D geometric information.<n>It has been verified that the proposed model can learn from a simulated 3D environment that mimics a traffic scene.
arXiv Detail & Related papers (2022-11-19T03:55:09Z) - DeepMultiCap: Performance Capture of Multiple Characters Using Sparse
Multiview Cameras [63.186486240525554]
DeepMultiCap is a novel method for multi-person performance capture using sparse multi-view cameras.
Our method can capture time varying surface details without the need of using pre-scanned template models.
arXiv Detail & Related papers (2021-05-01T14:32:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.