Generalizable Implicit Neural Representation As a Universal Spatiotemporal Traffic Data Learner
- URL: http://arxiv.org/abs/2406.08743v1
- Date: Thu, 13 Jun 2024 02:03:22 GMT
- Title: Generalizable Implicit Neural Representation As a Universal Spatiotemporal Traffic Data Learner
- Authors: Tong Nie, Guoyang Qin, Wei Ma, Jian Sun,
- Abstract summary: Spatiotemporal Traffic Data (STTD) measures the complex dynamical behaviors of the multiscale transportation system.
We present a novel paradigm to address the STTD learning problem by parameterizing STTD as an implicit neural representation.
We validate its effectiveness through extensive experiments in real-world scenarios, showcasing applications from corridor to network scales.
- Score: 46.866240648471894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: $\textbf{This is the conference version of our paper: Spatiotemporal Implicit Neural Representation as a Generalized Traffic Data Learner}$. Spatiotemporal Traffic Data (STTD) measures the complex dynamical behaviors of the multiscale transportation system. Existing methods aim to reconstruct STTD using low-dimensional models. However, they are limited to data-specific dimensions or source-dependent patterns, restricting them from unifying representations. Here, we present a novel paradigm to address the STTD learning problem by parameterizing STTD as an implicit neural representation. To discern the underlying dynamics in low-dimensional regimes, coordinate-based neural networks that can encode high-frequency structures are employed to directly map coordinates to traffic variables. To unravel the entangled spatial-temporal interactions, the variability is decomposed into separate processes. We further enable modeling in irregular spaces such as sensor graphs using spectral embedding. Through continuous representations, our approach enables the modeling of a variety of STTD with a unified input, thereby serving as a generalized learner of the underlying traffic dynamics. It is also shown that it can learn implicit low-rank priors and smoothness regularization from the data, making it versatile for learning different dominating data patterns. We validate its effectiveness through extensive experiments in real-world scenarios, showcasing applications from corridor to network scales. Empirical results not only indicate that our model has significant superiority over conventional low-rank models, but also highlight that the versatility of the approach. We anticipate that this pioneering modeling perspective could lay the foundation for universal representation of STTD in various real-world tasks. $\textbf{The full version can be found at:}$ https://doi.org/10.48550/arXiv.2405.03185.
Related papers
- Spatiotemporal Implicit Neural Representation as a Generalized Traffic Data Learner [46.866240648471894]
Spatiotemporal Traffic Data (STTD) measures the complex dynamical behaviors of the multiscale transportation system.
We present a novel paradigm to address the STTD learning problem by parameterizing STTD as an implicit neural representation.
We validate its effectiveness through extensive experiments in real-world scenarios, showcasing applications from corridor to network scales.
arXiv Detail & Related papers (2024-05-06T06:23:06Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Foundational Inference Models for Dynamical Systems [5.549794481031468]
We offer a fresh perspective on the classical problem of imputing missing time series data, whose underlying dynamics are assumed to be determined by ODEs.
We propose a novel supervised learning framework for zero-shot time series imputation, through parametric functions satisfying some (hidden) ODEs.
We empirically demonstrate that one and the same (pretrained) recognition model can perform zero-shot imputation across 63 distinct time series with missing values.
arXiv Detail & Related papers (2024-02-12T11:48:54Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - ProtoVAE: Prototypical Networks for Unsupervised Disentanglement [1.6114012813668934]
We introduce a novel deep generative VAE-based model, ProtoVAE, that leverages a deep metric learning Prototypical network trained using self-supervision.
Our model is completely unsupervised and requires no priori knowledge of the dataset, including the number of factors.
We evaluate our proposed model on the benchmark dSprites, 3DShapes, and MPI3D disentanglement datasets.
arXiv Detail & Related papers (2023-05-16T01:29:26Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - Dynamic Spatiotemporal Graph Convolutional Neural Networks for Traffic
Data Imputation with Complex Missing Patterns [3.9318191265352196]
We propose a novel deep learning framework called Dynamic Spatio Graph Contemporal Networks (DSTG) to impute missing traffic data.
We introduce a graph structure estimation technique to model the dynamic spatial dependencies real-time traffic information and road network structure.
Our proposed model outperforms existing deep learning models in all kinds of missing scenarios and the graph structure estimation technique contributes to the model performance.
arXiv Detail & Related papers (2021-09-17T05:47:17Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.