論文の概要: Plausibility Vaccine: Injecting LLM Knowledge for Event Plausibility
- arxiv url: http://arxiv.org/abs/2503.12667v1
- Date: Sun, 16 Mar 2025 21:55:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:36:05.666742
- Title: Plausibility Vaccine: Injecting LLM Knowledge for Event Plausibility
- Title(参考訳): プラウザビリティワクチン:イベントプラウザビリティのためのLSM知識注入
- Authors: Jacob Chmura, Jonah Dauvet, Sebastian Sabry,
- Abstract要約: 我々は12のタスクアダプタを訓練し、様々な物理的特性や関連性について学習する。
予め訓練されたAlBERT埋め込み上で,各タスクから潜在意味知識を構成するためのアダプタ融合を行う。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Despite advances in language modelling, distributional methods that build semantic representations from co-occurrences fail to discriminate between plausible and implausible events. In this work, we investigate how plausibility prediction can be improved by injecting latent knowledge prompted from large language models using parameter-efficient fine-tuning. We train 12 task adapters to learn various physical properties and association measures and perform adapter fusion to compose latent semantic knowledge from each task on top of pre-trained AlBERT embeddings. We automate auxiliary task data generation, which enables us to scale our approach and fine-tune our learned representations across two plausibility datasets. Our code is available at https://github.com/Jacob-Chmura/plausibility-vaccine.
- Abstract(参考訳): 言語モデリングの進歩にもかかわらず、共起から意味表現を構築する分布的手法は、可算事象と非可算事象の区別に失敗する。
本研究では,パラメータ効率のよい微調整を用いた大規模言語モデルから潜在知識を注入することにより,妥当性の予測をいかに改善できるかを検討する。
我々は12のタスクアダプタを訓練し、様々な物理特性や関連度を学習し、アダプティブ融合を行い、事前訓練されたAlBERT埋め込み上で各タスクから潜在意味知識を構成する。
タスクデータ生成を補助的に自動化することで、アプローチをスケールし、学習した表現を2つの可視性データセットにわたって微調整することが可能になります。
私たちのコードはhttps://github.com/Jacob-Chmura/plausibility-vaccine.comで公開されています。
関連論文リスト
- Multi-Stage Knowledge Integration of Vision-Language Models for Continual Learning [79.46570165281084]
蒸留法における人間の学習過程をエミュレートするマルチステージ知識統合ネットワーク(MulKI)を提案する。
Mulkiは、イデオロギーの排除、新しいイデオロギーの追加、イデオロギーの排除、コネクティクスの作りという4つの段階を通じてこれを達成している。
提案手法は,下流タスク間の連続学習をサポートしながら,ゼロショット能力の維持における大幅な改善を示す。
論文 参考訳(メタデータ) (2024-11-11T07:36:19Z) - Plausible-Parrots @ MSP2023: Enhancing Semantic Plausibility Modeling using Entity and Event Knowledge [1.6233244703352492]
外部知識ベースから抽出した詳細なエンティティタイプ、イベントタイプおよびそれらの定義を用いて、大型言語モデル(LLM)を強化する。
実験結果から,事象の意味的妥当性のモデル化におけるインジェクト知識の有効性が示された。
論文 参考訳(メタデータ) (2024-08-29T23:13:45Z) - Make Prompts Adaptable: Bayesian Modeling for Vision-Language Prompt
Learning with Data-Dependent Prior [14.232144691524528]
最近のVision-Language Pretrainedモデルは、多くの下流タスクのバックボーンとなっている。
MLEトレーニングは、トレーニングデータにおいて、コンテキストベクトルを過度に適合する画像特徴に導くことができる。
本稿では,素早い学習のためのベイズ的枠組みを提案する。
論文 参考訳(メタデータ) (2024-01-09T10:15:59Z) - Reinforcement Learning from Passive Data via Latent Intentions [86.4969514480008]
我々は、下流RLを加速する機能を学ぶために、受動的データが引き続き使用できることを示す。
我々のアプローチは、意図をモデル化することで受動的データから学習する。
実験では、クロス・エボディメント・ビデオデータやYouTubeビデオなど、さまざまな形式の受動的データから学習できることを実証した。
論文 参考訳(メタデータ) (2023-04-10T17:59:05Z) - Diagnosing and Rectifying Vision Models using Language [31.588965563961573]
最近のコントラスト学習モデルは、強力な視覚分類器を構築するのに適した埋め込み空間を学習できることを実証している。
我々の研究は、このマルチモーダル埋め込み空間の明確な利点として、自然言語で視覚分類器を診断する能力を挙げている。
提案手法は,ハイエラーデータスライスを発見し,重要な属性を同定し,さらに好ましくないモデルの振る舞いを補正する。
論文 参考訳(メタデータ) (2023-02-08T18:59:42Z) - A Cohesive Distillation Architecture for Neural Language Models [0.0]
自然言語処理の最近のトレンドは、言語モデル(LM)のサイズが指数関数的に増加することである。
本研究では,大規模モデルの効率的な代替手段を提供するために,知識蒸留法(KD)について検討する。
論文 参考訳(メタデータ) (2023-01-12T08:01:53Z) - Tyger: Task-Type-Generic Active Learning for Molecular Property
Prediction [121.97742787439546]
分子の性質を正確に予測する方法は、AIによる薬物発見において重要な問題である。
アノテーションのコストを削減するため,注釈付けのための最も代表的で情報性の高いデータのみを選択するために,深層能動学習法が開発された。
本稿では,異なるタイプの学習タスクを統一的に処理できるタスク型汎用能動的学習フレームワーク(Tyger)を提案する。
論文 参考訳(メタデータ) (2022-05-23T12:56:12Z) - BERT WEAVER: Using WEight AVERaging to enable lifelong learning for
transformer-based models in biomedical semantic search engines [49.75878234192369]
We present WEAVER, a simple, yet efficient post-processing method that infuse old knowledge into the new model。
WEAVERを逐次的に適用すると、同じ単語の埋め込み分布が、一度にすべてのデータに対する総合的なトレーニングとして得られることを示す。
論文 参考訳(メタデータ) (2022-02-21T10:34:41Z) - Generative Conversational Networks [67.13144697969501]
本稿では,対話エージェントが独自のラベル付き学習データを生成することを学習する,生成会話ネットワーク(Generative Conversational Networks)というフレームワークを提案する。
そこで本研究では,シードデータから学習したベースラインモデルに対して,意図検出が平均35%,スロットタグが平均21%向上したことを示す。
論文 参考訳(メタデータ) (2021-06-15T23:19:37Z) - Parameter Space Factorization for Zero-Shot Learning across Tasks and
Languages [112.65994041398481]
本稿では,ニューラルパラメータの空間に対するベイズ生成モデルを提案する。
タスク言語の組み合わせから得られたデータに基づいて、そのような潜伏変数よりも後部を推測する。
我々のモデルは、最先端のゼロショットの言語間転送手法よりも、同等か良い結果が得られる。
論文 参考訳(メタデータ) (2020-01-30T16:58:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。