AI Agents: Evolution, Architecture, and Real-World Applications
- URL: http://arxiv.org/abs/2503.12687v1
- Date: Sun, 16 Mar 2025 23:07:48 GMT
- Title: AI Agents: Evolution, Architecture, and Real-World Applications
- Authors: Naveen Krishnan,
- Abstract summary: The paper examines the evolution, architecture, and practical applications of AI agents from their early, rule-based incarnations to modern sophisticated systems that integrate large language models with dedicated modules for perception, planning, and tool use.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper examines the evolution, architecture, and practical applications of AI agents from their early, rule-based incarnations to modern sophisticated systems that integrate large language models with dedicated modules for perception, planning, and tool use. Emphasizing both theoretical foundations and real-world deployments, the paper reviews key agent paradigms, discusses limitations of current evaluation benchmarks, and proposes a holistic evaluation framework that balances task effectiveness, efficiency, robustness, and safety. Applications across enterprise, personal assistance, and specialized domains are analyzed, with insights into future research directions for more resilient and adaptive AI agent systems.
Related papers
- From LLM Reasoning to Autonomous AI Agents: A Comprehensive Review [1.4929298667651645]
We present a comparison of benchmarks developed between 2019 and 2025 that evaluate large language models and autonomous AI agents.
We propose a taxonomy of approximately 60 benchmarks that cover knowledge reasoning, mathematical problem-solving, code generation and software engineering, factual grounding and retrieval, domain-specific evaluations, multimodal and embodied tasks, task orchestration, and interactive assessments.
We present real-world applications of autonomous AI agents in materials science, biomedical research, academic ideation, software engineering, synthetic data generation, mathematical problem-solving, geographic information systems, multimedia, healthcare, and finance.
arXiv Detail & Related papers (2025-04-28T11:08:22Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [133.45145180645537]
The advent of large language models (LLMs) has catalyzed a transformative shift in artificial intelligence.
As these agents increasingly drive AI research and practical applications, their design, evaluation, and continuous improvement present intricate, multifaceted challenges.
This survey provides a comprehensive overview, framing intelligent agents within a modular, brain-inspired architecture.
arXiv Detail & Related papers (2025-03-31T18:00:29Z) - A Survey on (M)LLM-Based GUI Agents [62.57899977018417]
Graphical User Interface (GUI) Agents have emerged as a transformative paradigm in human-computer interaction.
Recent advances in large language models and multimodal learning have revolutionized GUI automation across desktop, mobile, and web platforms.
This survey identifies key technical challenges, including accurate element localization, effective knowledge retrieval, long-horizon planning, and safety-aware execution control.
arXiv Detail & Related papers (2025-03-27T17:58:31Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.
This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.
Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - Survey on Evaluation of LLM-based Agents [28.91672694491855]
The emergence of LLM-based agents represents a paradigm shift in AI.
This paper provides the first comprehensive survey of evaluation methodologies for these increasingly capable agents.
arXiv Detail & Related papers (2025-03-20T17:59:23Z) - Towards Enterprise-Ready Computer Using Generalist Agent [2.8457587793623875]
This paper presents our ongoing work toward developing an enterprise-ready Computer Using Generalist Agent (CUGA) system.<n>By integrating state-of-the-art agentic AI techniques with a systematic approach to iterative evaluation, analysis, and refinement, we have achieved rapid and cost-effective performance gains.
arXiv Detail & Related papers (2025-02-24T09:31:56Z) - AI Agentic workflows and Enterprise APIs: Adapting API architectures for the age of AI agents [0.0]
Generative AI has catalyzed the emergence of autonomous AI agents, presenting unprecedented challenges for enterprise computing infrastructures.<n>Current enterprise API architectures are predominantly designed for human-driven, predefined interaction patterns, rendering them ill-equipped to support intelligent agents' dynamic, goal-oriented behaviors.<n>This research systematically examines the architectural adaptations for enterprise APIs to support AI agentic effectively.
arXiv Detail & Related papers (2025-01-22T05:55:16Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - The Landscape of Emerging AI Agent Architectures for Reasoning, Planning, and Tool Calling: A Survey [0.0]
This paper examines the recent advancements in AI agent implementations.
It focuses on their ability to achieve complex goals that require enhanced reasoning, planning, and tool execution capabilities.
arXiv Detail & Related papers (2024-04-17T17:32:41Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents [74.16170899755281]
We introduce AgentBoard, a pioneering comprehensive benchmark and accompanied open-source evaluation framework tailored to analytical evaluation of LLM agents.<n>AgentBoard offers a fine-grained progress rate metric that captures incremental advancements as well as a comprehensive evaluation toolkit.<n>This not only sheds light on the capabilities and limitations of LLM agents but also propels the interpretability of their performance to the forefront.
arXiv Detail & Related papers (2024-01-24T01:51:00Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - Towards Responsible Generative AI: A Reference Architecture for Designing Foundation Model based Agents [28.406492378232695]
Foundation model based agents derive their autonomy from the capabilities of foundation models.
This paper presents a pattern-oriented reference architecture that serves as guidance when designing foundation model based agents.
arXiv Detail & Related papers (2023-11-22T04:21:47Z) - Modelling Multi-Agent Epistemic Planning in ASP [66.76082318001976]
This paper presents an implementation of a multi-shot Answer Set Programming-based planner that can reason in multi-agent epistemic settings.
The paper shows how the planner, exploiting an ad-hoc epistemic state representation and the efficiency of ASP solvers, has competitive performance results on benchmarks collected from the literature.
arXiv Detail & Related papers (2020-08-07T06:35:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.