VasTSD: Learning 3D Vascular Tree-state Space Diffusion Model for Angiography Synthesis
- URL: http://arxiv.org/abs/2503.12758v1
- Date: Mon, 17 Mar 2025 02:53:38 GMT
- Title: VasTSD: Learning 3D Vascular Tree-state Space Diffusion Model for Angiography Synthesis
- Authors: Zhifeng Wang, Renjiao Yi, Xin Wen, Chenyang Zhu, Kai Xu,
- Abstract summary: We propose VasTSD, a 3D vascular tree-state space diffusion model to synthesize angiography from 3D non-angiographic volumes.<n>A pre-trained vision embedder is employed to construct vascular state space representations, enabling consistent modeling of vascular structures across multiple modalities.
- Score: 24.51837919255267
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Angiography imaging is a medical imaging technique that enhances the visibility of blood vessels within the body by using contrast agents. Angiographic images can effectively assist in the diagnosis of vascular diseases. However, contrast agents may bring extra radiation exposure which is harmful to patients with health risks. To mitigate these concerns, in this paper, we aim to automatically generate angiography from non-angiographic inputs, by leveraging and enhancing the inherent physical properties of vascular structures. Previous methods relying on 2D slice-based angiography synthesis struggle with maintaining continuity in 3D vascular structures and exhibit limited effectiveness across different imaging modalities. We propose VasTSD, a 3D vascular tree-state space diffusion model to synthesize angiography from 3D non-angiographic volumes, with a novel state space serialization approach that dynamically constructs vascular tree topologies, integrating these with a diffusion-based generative model to ensure the generation of anatomically continuous vasculature in 3D volumes. A pre-trained vision embedder is employed to construct vascular state space representations, enabling consistent modeling of vascular structures across multiple modalities. Extensive experiments on various angiographic datasets demonstrate the superiority of VasTSD over prior works, achieving enhanced continuity of blood vessels in synthesized angiographic synthesis for multiple modalities and anatomical regions.
Related papers
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
We evaluate our method on three public longitudinal benchmark datasets of brain MRI and chest X-rays for counterfactual image generation.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario [0.8749675983608172]
This model intends to provide a dataset of brain arteries which could be used by a 3D convolutional neural network to efficiently detect Intra-Cranial Aneurysms.
In this work, we thoroughly describe the synthetic vasculature model, we build up a neural network designed for aneurysm segmentation and detection, and we carry out an in-depth evaluation of the performance gap gained thanks to the synthetic model data augmentation.
arXiv Detail & Related papers (2024-11-04T18:08:24Z) - KLDD: Kalman Filter based Linear Deformable Diffusion Model in Retinal Image Segmentation [51.03868117057726]
This paper proposes a novel Kalman filter based Linear Deformable Diffusion (KLDD) model for retinal vessel segmentation.
Our model employs a diffusion process that iteratively refines the segmentation, leveraging the flexible receptive fields of deformable convolutions.
Experiments are evaluated on retinal fundus image datasets (DRIVE, CHASE_DB1) and the 3mm and 6mm of the OCTA-500 dataset.
arXiv Detail & Related papers (2024-09-19T14:21:38Z) - 3D Vessel Graph Generation Using Denoising Diffusion [4.100929120985704]
Blood vessel networks, represented as 3D graphs, help predict disease biomarkers, simulate blood flow, and aid in synthetic image generation.
Previous methods aimed at generating vessel trees mostly in an autoregressive style and could not be applied to vessel graphs with cycles such as capillaries.
We introduce the first application of textitdenoising diffusion models in 3D vessel graph generation.
arXiv Detail & Related papers (2024-07-08T11:39:21Z) - 3D Vessel Reconstruction from Sparse-View Dynamic DSA Images via Vessel Probability Guided Attenuation Learning [79.60829508459753]
Current commercial Digital Subtraction Angiography (DSA) systems typically demand hundreds of scanning views to perform reconstruction.
The dynamic blood flow and insufficient input of sparse-view DSA images present significant challenges to the 3D vessel reconstruction task.
We propose to use a time-agnostic vessel probability field to solve this problem effectively.
arXiv Detail & Related papers (2024-05-17T11:23:33Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
We present a lightweight simulation of the retinal vascular network based on space colonization for faster and more realistic OCTA synthesis.
We demonstrate the superior segmentation performance of our approach in extensive quantitative and qualitative experiments on three public datasets.
arXiv Detail & Related papers (2023-06-19T14:01:47Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Going Off-Grid: Continuous Implicit Neural Representations for 3D
Vascular Modeling [3.435923468974656]
Personalised 3D vascular models are valuable for diagnosis, prognosis and treatment planning in patients with cardiovascular disease.
Traditionally, such models have been constructed with explicit representations such as meshes and voxel masks.
Here, we propose to represent surfaces by the zero level set of their signed distance function in a differentiable implicit neural representation (INR)
This allows us to model complex vascular structures with a representation that is implicit, continuous, light-weight, and easy to integrate with deep learning algorithms.
arXiv Detail & Related papers (2022-07-29T13:08:35Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
Photoacoustic tomography (PAT) is a novel imaging technique that can resolve both morphological and functional tissue properties.
A current drawback is the limited field-of-view provided by the conventionally applied 2D probes.
We present a novel approach to 3D reconstruction of PAT data that does not require an external tracking system.
arXiv Detail & Related papers (2020-11-10T09:27:56Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - Weakly-supervised 3D coronary artery reconstruction from two-view angiographic images [4.458466062406226]
We propose an adversarial and generative way to reconstruct three dimensional coronary artery models.
With 3D fully supervised learning and 2D weakly supervised learning schemes, we obtained reconstruction accuracies that outperform state-of-art techniques.
arXiv Detail & Related papers (2020-03-26T11:41:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.