論文の概要: RAG-RL: Advancing Retrieval-Augmented Generation via RL and Curriculum Learning
- arxiv url: http://arxiv.org/abs/2503.12759v1
- Date: Mon, 17 Mar 2025 02:53:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 16:00:03.606264
- Title: RAG-RL: Advancing Retrieval-Augmented Generation via RL and Curriculum Learning
- Title(参考訳): RAG-RL:RLとカリキュラム学習による検索向上
- Authors: Jerry Huang, Siddarth Madala, Risham Sidhu, Cheng Niu, Julia Hockenmaier, Tong Zhang,
- Abstract要約: 本稿では、検索強化生成(RAG)設定に特化して訓練された最初の推論言語モデル(RLM)であるRAG-RLを紹介する。
RAG-RLは、より強力な回答生成モデルにより、検索された情報のより大きなセット内で関連するコンテキストを識別できることを実証する。
強化学習(RL)後学習プロセスにおけるカリキュラム設計は,モデル性能向上のための強力なアプローチであることを示す。
- 参考スコア(独自算出の注目度): 11.872929831119661
- License:
- Abstract: Recent research highlights the challenges retrieval models face in retrieving useful contexts and the limitations of generation models in effectively utilizing those contexts in retrieval-augmented generation (RAG) settings. To address these challenges, we introduce RAG-RL, the first reasoning language model (RLM) specifically trained for RAG. RAG-RL demonstrates that stronger answer generation models can identify relevant contexts within larger sets of retrieved information -- thereby alleviating the burden on retrievers -- while also being able to utilize those contexts more effectively. Moreover, we show that curriculum design in the reinforcement learning (RL) post-training process is a powerful approach to enhancing model performance. We benchmark our method on two open-domain question-answering datasets and achieve state-of-the-art results, surpassing previous SOTA generative reader models. In addition, we offers empirical insights into various curriculum learning strategies, providing a deeper understanding of their impact on model performance.
- Abstract(参考訳): 最近の研究は、検索モデルが有用なコンテキストを検索する際に直面する課題と、それらのコンテキストを検索強化世代(RAG)設定で効果的に活用するための生成モデルの限界を強調している。
これらの課題に対処するために、RAGに特化して訓練された最初の推論言語モデル(RLM)であるRAG-RLを紹介する。
RAG-RLは、より強力な回答生成モデルが、検索された情報のより大きなセット内で関連するコンテキストを識別できることを示し、その結果、検索者の負担を軽減すると同時に、それらのコンテキストをより効果的に活用できることを示した。
さらに、強化学習(RL)後学習プロセスにおけるカリキュラム設計は、モデル性能を向上させるための強力なアプローチであることを示す。
提案手法を2つのオープンドメイン質問応答データセットにベンチマークし,従来のSOTA生成読影モデルを上回る最新結果を得た。
さらに、さまざまなカリキュラム学習戦略に関する実証的な洞察を提供し、モデルパフォーマンスへの影響をより深く理解する。
関連論文リスト
- Reusing Embeddings: Reproducible Reward Model Research in Large Language Model Alignment without GPUs [58.18140409409302]
大規模言語モデル (LLM) は強化学習 (RL) を通じて構造化タスクに大きく進歩した。
チャットボットやコンテンツ生成といった幅広い分野にRLを適用することは、ユニークな課題だ。
埋め込み型報酬モデルを用いた既存の報酬モデルアンサンブル研究の再現事例について述べる。
論文 参考訳(メタデータ) (2025-02-04T19:37:35Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
本稿では,o1-like RAGモデルを学習し,最終回答を生成する前に段階的に関連情報を抽出・推論する手法を提案する。
提案手法であるCoRAGは,進化状態に基づいて動的にクエリを再構成する。
論文 参考訳(メタデータ) (2025-01-24T09:12:52Z) - RAG-Reward: Optimizing RAG with Reward Modeling and RLHF [8.911260109659489]
Retrieval-augmented Generation (RAG)は、関連知識と最新の知識でLarge Language Models (LLM)を強化する。
RAG最適化のための強化学習における報酬モデルの役割は未定である。
報酬モデルを開発するためのフレームワークである textbfRAG-Reward を導入する。
論文 参考訳(メタデータ) (2025-01-22T22:59:19Z) - A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future Directions [0.0]
RAGは、検索機構と生成言語モデルを組み合わせることで、出力の精度を高める。
近年の研究では, 検索効率向上のための新しい手法が注目されている。
RAGモデルの堅牢性向上に焦点をあてた今後の研究方向性が提案されている。
論文 参考訳(メタデータ) (2024-10-03T22:29:47Z) - Retrieval Meets Reasoning: Even High-school Textbook Knowledge Benefits Multimodal Reasoning [49.3242278912771]
RMR(Retrieval Meets Reasoning)と呼ばれる新しいマルチモーダルRAGフレームワークについて紹介する。
RMRフレームワークは、最も関連性の高い問合せ対を特定するために、バイモーダル検索モジュールを使用する。
これは、ベンチマークデータセットのスペクトルにわたって様々なビジョン言語モデルの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2024-05-31T14:23:49Z) - RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation [42.82192656794179]
大きな言語モデル(LLM)は優れた能力を示すが、不正確なあるいは幻覚反応を引き起こす傾向がある。
この制限は、膨大な事前トレーニングデータセットに依存することに起因するため、目に見えないシナリオでのエラーの影響を受けやすい。
Retrieval-Augmented Generation (RAG) は、外部の関連文書を応答生成プロセスに組み込むことによって、この問題に対処する。
論文 参考訳(メタデータ) (2024-03-31T08:58:54Z) - Retrieval-Augmented Generation for AI-Generated Content: A Survey [38.50754568320154]
このような課題に対処するためのパラダイムとして,レトリーバル拡張生成(RAG)が登場している。
RAGは情報検索プロセスを導入し、利用可能なデータストアから関連オブジェクトを検索することで生成プロセスを強化する。
本稿では,RAG手法をAIGCシナリオに統合する既存の取り組みを概観的にレビューする。
論文 参考訳(メタデータ) (2024-02-29T18:59:01Z) - Back to Basics: A Simple Recipe for Improving Out-of-Domain Retrieval in
Dense Encoders [63.28408887247742]
得られたモデルにおいて,より優れた一般化能力を得るために,トレーニング手順の改善が可能であるかを検討する。
我々は、高密度エンコーダをトレーニングするための簡単なレシピを推奨する: LoRAのようなパラメータ効率のよいMSMARCOのトレーニング。
論文 参考訳(メタデータ) (2023-11-16T10:42:58Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
検索と生成を反復的に同期させるIter-RetGenと呼ばれる手法により,高い性能が得られることを示す。
モデル出力は、タスクを完了するために必要なものを示し、より関連する知識を取得するための情報的コンテキストを提供する。
Iter-RetGenプロセスは、すべての知識を全体として取得し、構造的な制約なしに生成時の柔軟性をほとんど保持します。
論文 参考訳(メタデータ) (2023-05-24T16:17:36Z) - Reinforcement Learning in Credit Scoring and Underwriting [7.356954349107956]
我々は、行動空間の更新と複数選択のアクションを取り入れて、クレジットスコアリングに強化学習原則を適用した。
より情報的な意思決定を可能にするために,新たに2つのRLベースのクレジットカード代入アルゴリズムを導入する。
論文 参考訳(メタデータ) (2022-12-15T06:36:14Z) - INFOrmation Prioritization through EmPOWERment in Visual Model-Based RL [90.06845886194235]
モデルベース強化学習(RL)のための修正目的を提案する。
相互情報に基づく状態空間モデルに,変分エンパワーメントにインスパイアされた用語を統合する。
本研究は,視覚に基づくロボット制御作業における自然な映像背景を用いたアプローチの評価である。
論文 参考訳(メタデータ) (2022-04-18T23:09:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。