Analyzing sequential activity and travel decisions with interpretable deep inverse reinforcement learning
- URL: http://arxiv.org/abs/2503.12761v1
- Date: Mon, 17 Mar 2025 02:54:02 GMT
- Title: Analyzing sequential activity and travel decisions with interpretable deep inverse reinforcement learning
- Authors: Yuebing Liang, Shenhao Wang, Jiangbo Yu, Zhan Zhao, Jinhua Zhao, Sandy Pentland,
- Abstract summary: We introduce an interpretable DIRL framework for analyzing activity-travel decision processes.<n>Our proposed framework adapts an adversarial IRL approach to infer the reward and policy functions of activity-travel behavior.<n>Our analysis of real-world travel survey data reveals promising results in two key areas.
- Score: 11.791625302942418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Travel demand modeling has shifted from aggregated trip-based models to behavior-oriented activity-based models because daily trips are essentially driven by human activities. To analyze the sequential activity-travel decisions, deep inverse reinforcement learning (DIRL) has proven effective in learning the decision mechanisms by approximating a reward function to represent preferences and a policy function to replicate observed behavior using deep neural networks (DNNs). However, most existing research has focused on using DIRL to enhance only prediction accuracy, with limited exploration into interpreting the underlying decision mechanisms guiding sequential decision-making. To address this gap, we introduce an interpretable DIRL framework for analyzing activity-travel decision processes, bridging the gap between data-driven machine learning and theory-driven behavioral models. Our proposed framework adapts an adversarial IRL approach to infer the reward and policy functions of activity-travel behavior. The policy function is interpreted through a surrogate interpretable model based on choice probabilities from the policy function, while the reward function is interpreted by deriving both short-term rewards and long-term returns for various activity-travel patterns. Our analysis of real-world travel survey data reveals promising results in two key areas: (i) behavioral pattern insights from the policy function, highlighting critical factors in decision-making and variations among socio-demographic groups, and (ii) behavioral preference insights from the reward function, indicating the utility individuals gain from specific activity sequences.
Related papers
- AI-Driven Day-to-Day Route Choice [15.934133434324755]
"LLMTraveler" is an agent that learns from past experiences and makes decisions by balancing retrieved data and personality traits.<n>This paper systematically evaluates the LLMTraveler's ability to replicate human-like decision-making through two stages of day-to-day congestion games.<n>This capability offers valuable insights for transportation policymaking, such as simulating traveler responses to new policies or changes in the network.
arXiv Detail & Related papers (2024-12-04T14:13:38Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Constrained Reinforcement Learning with Average Reward Objective: Model-Based and Model-Free Algorithms [34.593772931446125]
monograph focuses on the exploration of various model-based and model-free approaches for Constrained within the context of average reward Markov Decision Processes (MDPs)
The primal-dual policy gradient-based algorithm is explored as a solution for constrained MDPs.
arXiv Detail & Related papers (2024-06-17T12:46:02Z) - A Unifying Framework for Action-Conditional Self-Predictive Reinforcement Learning [48.59516337905877]
Learning a good representation is a crucial challenge for Reinforcement Learning (RL) agents.
Recent work has developed theoretical insights into these algorithms.
We take a step towards bridging the gap between theory and practice by analyzing an action-conditional self-predictive objective.
arXiv Detail & Related papers (2024-06-04T07:22:12Z) - REACT: Revealing Evolutionary Action Consequence Trajectories for Interpretable Reinforcement Learning [7.889696505137217]
We propose Revealing Evolutionary Action Consequence Trajectories (REACT) to enhance the interpretability of Reinforcement Learning (RL)
In contrast to the prevalent practice of RL models based on their optimal behavior learned during training, we posit that considering a range of edge-case trajectories provides a more comprehensive understanding of their inherent behavior.
Our results highlight its effectiveness in revealing nuanced aspects of RL models' behavior beyond optimal performance, thereby contributing to improved interpretability.
arXiv Detail & Related papers (2024-04-04T10:56:30Z) - Generative Intrinsic Optimization: Intrinsic Control with Model Learning [5.439020425819001]
Future sequence represents the outcome after executing the action into the environment.
Explicit outcomes may vary across state, return, or trajectory serving different purposes such as credit assignment or imitation learning.
We propose a policy scheme that seamlessly incorporates the mutual information, ensuring convergence to the optimal policy.
arXiv Detail & Related papers (2023-10-12T07:50:37Z) - Value-Distributional Model-Based Reinforcement Learning [59.758009422067]
Quantifying uncertainty about a policy's long-term performance is important to solve sequential decision-making tasks.
We study the problem from a model-based Bayesian reinforcement learning perspective.
We propose Epistemic Quantile-Regression (EQR), a model-based algorithm that learns a value distribution function.
arXiv Detail & Related papers (2023-08-12T14:59:19Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
We study the off-policy evaluation problem in reinforcement learning with linear function approximation.
We propose an algorithm, VA-OPE, which uses the estimated variance of the value function to reweight the Bellman residual in Fitted Q-Iteration.
arXiv Detail & Related papers (2021-06-22T17:58:46Z) - Generative Adversarial Reward Learning for Generalized Behavior Tendency
Inference [71.11416263370823]
We propose a generative inverse reinforcement learning for user behavioral preference modelling.
Our model can automatically learn the rewards from user's actions based on discriminative actor-critic network and Wasserstein GAN.
arXiv Detail & Related papers (2021-05-03T13:14:25Z) - Foresee then Evaluate: Decomposing Value Estimation with Latent Future
Prediction [37.06232589005015]
Value function is the central notion of Reinforcement Learning (RL)
We propose Value Decomposition with Future Prediction (VDFP)
We analytically decompose the value function into a latent future dynamics part and a policy-independent trajectory return part, inducing a way to model latent dynamics and returns separately in value estimation.
arXiv Detail & Related papers (2021-03-03T07:28:56Z) - Learning "What-if" Explanations for Sequential Decision-Making [92.8311073739295]
Building interpretable parameterizations of real-world decision-making on the basis of demonstrated behavior is essential.
We propose learning explanations of expert decisions by modeling their reward function in terms of preferences with respect to "what if" outcomes.
We highlight the effectiveness of our batch, counterfactual inverse reinforcement learning approach in recovering accurate and interpretable descriptions of behavior.
arXiv Detail & Related papers (2020-07-02T14:24:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.