論文の概要: Grounded Chain-of-Thought for Multimodal Large Language Models
- arxiv url: http://arxiv.org/abs/2503.12799v2
- Date: Mon, 24 Mar 2025 11:30:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:28:56.709182
- Title: Grounded Chain-of-Thought for Multimodal Large Language Models
- Title(参考訳): マルチモーダル大言語モデルのための接地型連鎖
- Authors: Qiong Wu, Xiangcong Yang, Yiyi Zhou, Chenxin Fang, Baiyang Song, Xiaoshuai Sun, Rongrong Ji,
- Abstract要約: 我々は,GCoT(Gunded Chain-of-Thought)と呼ばれるマルチモーダル大規模言語モデル(MLLM)の新しい学習タスクを提案する。
GCoTは、MLLMが関連する視覚的手がかりを段階的に認識し、グラウンド化するのを支援し、グラウンド化座標による正しい解を直感的に予測する。
この作業を容易にするために,5,033画像に対して24,022 GCoT例からなるマルチモーダルグラウンドド・チェーン・オブ・ソート(MM-GCoT)と呼ばれるデータセットを慎重に設計し,構築する。
- 参考スコア(独自算出の注目度): 66.04061083611863
- License:
- Abstract: Despite great progress, existing multimodal large language models (MLLMs) are prone to visual hallucination, greatly impeding their trustworthy applications. In this paper, we study this problem from the perspective of visual-spatial reasoning, and propose a new learning task for MLLMs, termed Grounded Chain-of-Thought (GCoT). Different from recent visual CoT studies, which focus more on visual knowledge reasoning, GCoT is keen to helping MLLMs to recognize and ground the relevant visual cues step by step, thereby predicting the correct answer with grounding coordinates as the intuitive basis. To facilitate this task, we also carefully design and construct a dataset called multimodal grounded chain-of-thought (MM-GCoT) consisting of 24,022 GCoT examples for 5,033 images. Besides, a comprehensive consistency evaluation system is also introduced, including the metrics of answer accuracy, grounding accuracy and answer-grounding consistency. We further design and conduct a bunch of experiments on 12 advanced MLLMs, and reveal some notable findings: i. most MLLMs performs poorly on the consistency evaluation, indicating obvious visual hallucination; ii. visual hallucination is not directly related to the parameter size and general multimodal performance, i.e., a larger and stronger MLLM is not less affected by this issue. Lastly, we also demonstrate that the proposed dataset can help existing MLLMs to well cultivate their GCoT capability and reduce the inconsistent answering significantly. Moreover, their GCoT can be also generalized to exiting multimodal tasks, such as open-world QA and REC.
- Abstract(参考訳): 大きな進歩にもかかわらず、既存のマルチモーダル・大規模言語モデル(MLLM)は視覚幻覚を起こす傾向にあり、信頼に値する応用を著しく妨げている。
本稿では,視覚空間的推論の観点からこの問題を考察し,GCoTと呼ばれるMLLMの新しい学習課題を提案する。
視覚知識推論に焦点を当てた最近の視覚的CoT研究とは異なり、GCoTはMLLMが関連する視覚的手がかりを段階的に認識し、接地するのを助けることに熱心であり、接地座標による正しい答えを直感的に予測する。
この作業を容易にするために,5,033画像に対して24,022 GCoT例からなるマルチモーダルグラウンドド・チェーン・オブ・ソート(MM-GCoT)と呼ばれるデータセットを慎重に設計し,構築する。
さらに,解答精度,解答精度,解答グラウンド整合性などの指標を含む総合的整合性評価システムも導入された。
さらに,12基の先進MLLMに関する一連の実験を設計し,実施し,いくつかの注目すべき発見を明らかにした。
ほとんどのMLLMは、視線幻覚を呈し、整合性の評価が不十分である。
視覚幻覚はパラメータサイズと一般的なマルチモーダル性能に直接関係しない、すなわち、より大きく強力なMLLMはこの問題の影響を受けない。
最後に、提案したデータセットは、既存のMLLMがGCoT能力を十分に育成し、一貫性のない回答を大幅に削減するのに役立つことを実証する。
さらに、GCoTは、オープンワールドQAやRECといったマルチモーダルタスクを終了するように一般化することもできる。
関連論文リスト
- Visual RAG: Expanding MLLM visual knowledge without fine-tuning [5.341192792319891]
本稿では、文脈から学習するMLLMの機能と検索機構を相乗的に組み合わせたVisual RAGを紹介する。
このようにして、得られたシステムは、トレーニングデータから抽出した知識に限らず、微調整なしで、迅速かつ容易に更新できる。
モデル画像分類性能を改善するための計算コストを大幅に削減し、トレーニングされていない新しい視覚領域やタスクにモデル知識を拡大する。
論文 参考訳(メタデータ) (2025-01-18T17:43:05Z) - Open Eyes, Then Reason: Fine-grained Visual Mathematical Understanding in MLLMs [62.875934732547435]
現在の大言語モデル(MLLM)は、細かな視覚的理解を必要とする数学的問題解決のタスクでは性能が劣ることが多い。
本稿では,最先端MLLMの視覚的接地能力を評価し,視覚的接地精度と問題解決性能との間に有意な負の相関関係を示す。
本稿では,幾何学的地上視覚エンコーダと,階層型視覚特徴マップの寄与度を動的に調整する機能ルータを備えた新しいアプローチであるSVE-Mathを提案する。
論文 参考訳(メタデータ) (2025-01-11T04:08:44Z) - Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings [69.35226485836641]
既存のMultimoal Large Language Models (MLLM) における視覚トークンの過剰使用は、しばしば明らかな冗長性を示し、非常に高価な計算をもたらす。
DyVTE(Dynamic visual-token exit)と呼ばれるMLLMの効率を改善するための簡易かつ効果的な手法を提案する。
DyVTEは軽量なハイパーネットワークを使用して、テキストトークンの状態を認識し、特定のレイヤの後にすべてのビジュアルトークンを削除する。
論文 参考訳(メタデータ) (2024-11-29T11:24:23Z) - MC-Bench: A Benchmark for Multi-Context Visual Grounding in the Era of MLLMs [61.56904387052982]
本稿では,マルチコンテキストの視覚的グラウンド化という新しい視覚的グラウンド化タスクを提案する。
オープンなテキストプロンプトに基づいて、複数の画像にまたがる関心のインスタンスをローカライズすることを目的としている。
我々は20以上の最先端MLLMと基盤モデルをベンチマークし、潜在的にマルチコンテキストの視覚的グラウンド化機能を有する。
論文 参考訳(メタデータ) (2024-10-16T07:52:57Z) - Rethinking VLMs and LLMs for Image Classification [6.550471260627169]
大きな言語モデル(LLM)は、新しい機能を実現するために、Visual Language Models(VLM)と統合されつつある。
オブジェクト認識やシーン認識では,LLMを使わないVLMの方が,VLMよりも優れた性能が得られることを示す。
本稿では,視覚的タスクをタスクに適したモデルに効率的にルーティングする,比較的小さなLCMを含む軽量な修正法を提案する。
論文 参考訳(メタデータ) (2024-10-03T23:40:21Z) - MM-SpuBench: Towards Better Understanding of Spurious Biases in Multimodal LLMs [38.93090238335506]
非意味な入力属性と予測対象変数の急激な相関を利用する傾向にあるスパースバイアスは、単一のモダリティデータに基づいて訓練されたディープラーニングモデルに深刻な落とし穴があることを明らかにした。
本稿では,9つの異なる相関関係のカテゴリに対するMLLMの信頼度を評価するために,包括的視覚質問応答(VQA)ベンチマークであるMM-SpuBenchを紹介する。
以上の結果から,これらのモデルからの素因相関への依存の持続性を明らかにし,素因バイアスを緩和する新たな手法の必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-06-24T20:29:16Z) - Mementos: A Comprehensive Benchmark for Multimodal Large Language Model
Reasoning over Image Sequences [80.54979242912944]
本稿では,MLLMの逐次画像推論能力を評価するためのベンチマークであるMementosを紹介する。
MLLMは与えられた画像列の動的情報を正確に記述するのに苦労しており、しばしば幻覚/誤表現につながる。
論文 参考訳(メタデータ) (2024-01-19T07:10:13Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
本稿では,IT-LVLMの基本的なコンピュータビジョンタスクにおける能力を評価するために,スケーラブルなテストベッドを提案する。
MERLIMには300K以上の画像検索ペアが含まれており、IT-LVLMにおけるクロスモーダルな"ハロシン化"イベントの検出に重点を置いている。
論文 参考訳(メタデータ) (2023-12-03T16:39:36Z) - From CLIP to DINO: Visual Encoders Shout in Multi-modal Large Language
Models [36.41816380074965]
大規模言語モデル(MLLM)における視覚エンコーダの有効性について検討する。
以上の結果から,CLIPの浅層構造は,接地や領域理解といったきめ細かいタスクに特に有利であることがわかった。
我々は,CLIPとDINOをMergingと統合したシンプルな機能統合戦略であるCOMMを提案する。
論文 参考訳(メタデータ) (2023-10-13T02:41:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。