論文の概要: From Head to Tail: Towards Balanced Representation in Large Vision-Language Models through Adaptive Data Calibration
- arxiv url: http://arxiv.org/abs/2503.12821v2
- Date: Tue, 18 Mar 2025 06:02:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 10:31:55.168573
- Title: From Head to Tail: Towards Balanced Representation in Large Vision-Language Models through Adaptive Data Calibration
- Title(参考訳): 頭から足へ:適応データ校正による大規模視覚言語モデルにおけるバランス表現に向けて
- Authors: Mingyang Song, Xiaoye Qu, Jiawei Zhou, Yu Cheng,
- Abstract要約: LVLM(Large Vision-Language Models)は、視覚的理解と言語生成の融合において大きな進歩を遂げている。
この成功にもかかわらず、LVLMのトレーニングデータは、データ分布が極めて不均衡であるLong-Tail (LT)問題に悩まされている。
DSの段階では,Denoising Diffusion Probabilistic Models(DDPM)と不足した画像を利用して,表現不足の部分を補う。
- 参考スコア(独自算出の注目度): 30.781359402734036
- License:
- Abstract: Large Vision-Language Models (LVLMs) have achieved significant progress in combining visual comprehension with language generation. Despite this success, the training data of LVLMs still suffers from Long-Tail (LT) problems, where the data distribution is highly imbalanced. Previous works have mainly focused on traditional VLM architectures, i.e., CLIP or ViT, and specific tasks such as recognition and classification. Nevertheless, the exploration of LVLM (e.g. LLaVA) and more general tasks (e.g. Visual Question Answering and Visual Reasoning) remains under-explored. In this paper, we first conduct an in-depth analysis of the LT issues in LVLMs and identify two core causes: the overrepresentation of head concepts and the underrepresentation of tail concepts. Based on the above observation, we propose an $\textbf{A}$daptive $\textbf{D}$ata $\textbf{R}$efinement Framework ($\textbf{ADR}$), which consists of two stages: $\textbf{D}$ata $\textbf{R}$ebalancing ($\textbf{DR}$) and $\textbf{D}$ata $\textbf{S}$ynthesis ($\textbf{DS}$). In the DR stage, we adaptively rebalance the redundant data based on entity distributions, while in the DS stage, we leverage Denoising Diffusion Probabilistic Models (DDPMs) and scarce images to supplement underrepresented portions. Through comprehensive evaluations across eleven benchmarks, our proposed ADR effectively mitigates the long-tail problem in the training data, improving the average performance of LLaVA 1.5 relatively by 4.36%, without increasing the training data volume.
- Abstract(参考訳): LVLM(Large Vision-Language Models)は、視覚的理解と言語生成の融合において大きな進歩を遂げている。
この成功にもかかわらず、LVLMのトレーニングデータは、データ分布が極めて不均衡であるLong-Tail (LT)問題に悩まされている。
これまでの研究は主に従来のVLMアーキテクチャ、すなわちCLIPやViT、認識や分類といった特定のタスクに重点を置いてきた。
それでも、LVLM (e g LLaVA) やより一般的なタスク (e g Visual Question Answering や Visual Reasoning など) の探索は未調査のままである。
本稿では,まずLVLMにおけるLT問題について詳細な解析を行い,頭部概念の過剰表現と尾概念の過小表現の2つの原因を同定する。
上記の観測結果に基づいて、$\textbf{A}$daptive $\textbf{D}$ata $\textbf{R}$efinement Framework ($\textbf{ADR}$) と$\textbf{D}$ata $\textbf{D}$ebalancing$\textbf{DR}$) と$\textbf{D}$ata $\textbf{S}$ynthesis$\textbf{DS}$) という2つのステージからなる。
DRの段階では、エンティティ分布に基づいて冗長データを適応的に再バランスさせ、DSの段階では、Denoising Diffusion Probabilistic Models(DDPM)と不足画像を利用して、未表現部分を補う。
提案したADRは,11ベンチマークの総合評価を通じて,トレーニングデータにおける長テール問題を効果的に軽減し,トレーニングデータ量を増大させることなく,LLaVA 1.5の平均性能を4.36%向上させる。
関連論文リスト
- S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
S$2$Rはモデルに推論時の自己検証と自己正当性を教えることによってLLM推論を強化する効率的なフレームワークである。
以上の結果から,Qwen2.5-math-7Bの精度は51.0%から81.6%に向上した。
論文 参考訳(メタデータ) (2025-02-18T13:40:22Z) - MM-RLHF: The Next Step Forward in Multimodal LLM Alignment [59.536850459059856]
MM-RLHF, $mathbf120k$ fine-fine, human-annotated preference comparison pairsを含むデータセットを紹介する。
本稿では,報酬モデルの品質向上とアライメントアルゴリズムの効率向上のために,いくつかの重要なイノベーションを提案する。
我々のアプローチは、$mathbf10$の異なる次元と$mathbf27$のベンチマークで厳格に評価されている。
論文 参考訳(メタデータ) (2025-02-14T18:59:51Z) - LMGT: Optimizing Exploration-Exploitation Balance in Reinforcement Learning through Language Model Guided Trade-offs [27.014415210732103]
強化学習のための新しいサンプル効率フレームワークである textbfLanguage textbfModel textbfGuided textbfTrade-offs (textbfLMGT) を紹介する。
論文 参考訳(メタデータ) (2024-09-07T07:40:43Z) - VLKEB: A Large Vision-Language Model Knowledge Editing Benchmark [53.091690659399234]
大規模言語モデル(LLM)の知識編集は注目されている。
3つのメトリクス(信頼性、局所性、一般性)からなる既存のLVLM編集ベンチマークは、合成された評価画像の品質が不足している。
我々は、新しいLarge $textbfV$ision-$textbfL$anguage Modelを構築するために、より信頼性の高いデータ収集手法を使用します。
論文 参考訳(メタデータ) (2024-03-12T06:16:33Z) - Unleashing the Power of Pre-trained Language Models for Offline Reinforcement Learning [50.9692060692705]
本稿では、オフラインRL用の決定変換器をベースとした一般的なフレームワークである、$textbfMo$tion Control(textbfLaMo$)のための$textbfLanguage Modelsを紹介する。
私たちのフレームワークは4つの重要なコンポーネントを強調しています。
逐次事前学習したLMを用いた決定変換器の初期化(2)LoRA微細調整法を用いて
特に,本手法は,限られたデータサンプルを持つシナリオにおいて,優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-31T16:24:17Z) - Pretraining task diversity and the emergence of non-Bayesian in-context
learning for regression [31.950737940558984]
事前訓練されたトランスフォーマーは、文脈内学習(ICL)の顕著な能力を示す
ICLは、事前トレーニング中に見られるタスクとは大きく異なる、基本的に$textitnew$タスクを解決できますか?
論文 参考訳(メタデータ) (2023-06-26T21:05:20Z) - SPDF: Sparse Pre-training and Dense Fine-tuning for Large Language
Models [4.114555639014612]
本研究は,非構造的重み空間を用いて,事前訓練中にのみ重みのサブセットを訓練する利点を示す。
我々は1.3Bパラメータ GPT-3 XL モデルに最大75%の間隔を誘導できることを示す。
論文 参考訳(メタデータ) (2023-03-18T17:56:01Z) - Training \beta-VAE by Aggregating a Learned Gaussian Posterior with a
Decoupled Decoder [0.553073476964056]
VAEトレーニングの現在の実践は、しばしば、再構成の忠実さと、潜伏空間の連続性$/$$分散の間のトレードオフをもたらす。
本稿では,2つの損失の対角的機構の直観と注意深い解析を行い,VAEを訓練するための簡易で効果的な2段階法を提案する。
本手法は, 3次元頭蓋骨再建と形状完成を目的とした医療データセットを用いて評価し, 提案手法を用いてトレーニングしたVAEの有望な生成能力を示す。
論文 参考訳(メタデータ) (2022-09-29T13:49:57Z) - Unsupervised Vision-and-Language Pre-training via Retrieval-based
Multi-Granular Alignment [66.77841319057299]
非並列テキストと画像のための教師なしビジョン・アンド・ランゲージ事前学習カリキュラムを提案する。
まず、検索に基づく手法を用いて、弱整列画像テキストコーパスを構築し、次に、複数粒状アライメントの事前学習タスクを適用する。
包括的なアブレーション研究は、それぞれの粒度がより強力な事前学習モデルを学ぶのに役立つことを示している。
論文 参考訳(メタデータ) (2022-03-01T05:34:01Z) - Self-Supervised Pre-Training for Transformer-Based Person
Re-Identification [54.55281692768765]
トランスフォーマーに基づく教師付き事前訓練は、人物再識別(ReID)において大きなパフォーマンスを達成する
ImageNetとReIDデータセットのドメインギャップのため、通常、パフォーマンスを高めるために、より大きなトレーニング済みデータセットが必要です。
この研究は、データとモデル構造の観点から、事前トレーニングデータセットとReIDデータセットのギャップを軽減することを目的としている。
論文 参考訳(メタデータ) (2021-11-23T18:59:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。