論文の概要: Unlock Pose Diversity: Accurate and Efficient Implicit Keypoint-based Spatiotemporal Diffusion for Audio-driven Talking Portrait
- arxiv url: http://arxiv.org/abs/2503.12963v1
- Date: Mon, 17 Mar 2025 09:18:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:30:29.146274
- Title: Unlock Pose Diversity: Accurate and Efficient Implicit Keypoint-based Spatiotemporal Diffusion for Audio-driven Talking Portrait
- Title(参考訳): アンロックポッドの多様性: 音声駆動型トーキングポートレートのためのキーポイントに基づく時空間拡散の精度と効率
- Authors: Chaolong Yang, Kai Yao, Yuyao Yan, Chenru Jiang, Weiguang Zhao, Jie Sun, Guangliang Cheng, Yifei Zhang, Bin Dong, Kaizhu Huang,
- Abstract要約: 教師なし暗黙的3D鍵点と時間拡散モデルを組み合わせた最初のフレームワークであるKDTalkerを提案する。
KDTalkerは顔情報密度に適応し、様々な頭部ポーズをモデル化し、柔軟に顔の詳細をキャプチャする拡散プロセスを可能にする。
- 参考スコア(独自算出の注目度): 30.481914742000697
- License:
- Abstract: Audio-driven single-image talking portrait generation plays a crucial role in virtual reality, digital human creation, and filmmaking. Existing approaches are generally categorized into keypoint-based and image-based methods. Keypoint-based methods effectively preserve character identity but struggle to capture fine facial details due to the fixed points limitation of the 3D Morphable Model. Moreover, traditional generative networks face challenges in establishing causality between audio and keypoints on limited datasets, resulting in low pose diversity. In contrast, image-based approaches produce high-quality portraits with diverse details using the diffusion network but incur identity distortion and expensive computational costs. In this work, we propose KDTalker, the first framework to combine unsupervised implicit 3D keypoint with a spatiotemporal diffusion model. Leveraging unsupervised implicit 3D keypoints, KDTalker adapts facial information densities, allowing the diffusion process to model diverse head poses and capture fine facial details flexibly. The custom-designed spatiotemporal attention mechanism ensures accurate lip synchronization, producing temporally consistent, high-quality animations while enhancing computational efficiency. Experimental results demonstrate that KDTalker achieves state-of-the-art performance regarding lip synchronization accuracy, head pose diversity, and execution efficiency.Our codes are available at https://github.com/chaolongy/KDTalker.
- Abstract(参考訳): オーディオ駆動による単一画像の肖像画生成は、仮想現実、デジタルヒューマン創造、映画製作において重要な役割を担っている。
既存のアプローチは一般にキーポイントベースとイメージベースに分類される。
キーポイントに基づく手法は、文字のアイデンティティを効果的に保存するが、3Dモーフィブルモデルの固定点制限のため、細かい顔の詳細を捉えるのに苦労する。
さらに、従来の生成ネットワークは、限られたデータセット上でオーディオとキーポイント間の因果関係を確立することの難しさに直面する。
対照的に、画像ベースアプローチは拡散ネットワークを用いて様々な細部で高品質なポートレートを生成するが、同一性歪みと高価な計算コストを発生させる。
本研究では,非教師付き暗黙的3次元鍵点と時空間拡散モデルを組み合わせた最初のフレームワークであるKDTalkerを提案する。
教師なしの暗黙の3Dキーポイントを活用することで、KDTalkerは顔情報密度を適応し、拡散プロセスが多様な頭部のポーズをモデル化し、柔軟な顔の詳細をキャプチャすることができる。
カスタムデザインの時空間アテンション機構により、正確な唇同期が保証され、時間的に一貫した高品質なアニメーションが生成され、計算効率が向上する。
実験の結果、KDTalkerは、リップ同期精度、ヘッドポーズの多様性、実行効率に関する最先端のパフォーマンスを実現しており、我々のコードはhttps://github.com/chaolongy/KDTalkerで公開されている。
関連論文リスト
- MimicTalk: Mimicking a personalized and expressive 3D talking face in minutes [74.82911268630463]
トーキングフェース生成(TFG)は、ターゲットアイデンティティーの顔をアニメーション化し、リアルなトーキングビデオを作成することを目的としている。
MimicTalkは、個人別TFGの効率性と堅牢性を改善するために、NeRFベースの個人非依存のジェネリックモデルから豊富な知識を活用する。
私たちのMimicTalkは、ビデオの品質、効率、表現性に関して、これまでのベースラインを超えていることが実験によって示されています。
論文 参考訳(メタデータ) (2024-10-09T10:12:37Z) - Realistic and Efficient Face Swapping: A Unified Approach with Diffusion Models [69.50286698375386]
フェース・スワッピングのための拡散モデルを改善する新しい手法を提案する。
インペイントトレーニング中にマスクシャッフル技術を導入し、スワップのためのいわゆるユニバーサルモデルを作成することができる。
私たちのアプローチは比較的統一されたアプローチなので、他のオフザシェルフモデルのエラーに対して耐性があります。
論文 参考訳(メタデータ) (2024-09-11T13:43:53Z) - KMTalk: Speech-Driven 3D Facial Animation with Key Motion Embedding [19.15471840100407]
キーモーション埋め込みを用いた音声系列から3次元顔の動きを合成する新しい手法を提案する。
本手法は,言語に基づくキーモーション獲得とモーダル間動作完了の2つのモジュールを通じて,言語的およびデータ駆動の先行情報を統合する。
後者は、キーモーションを音声機能によって案内される3D音声のフルシーケンスに拡張し、時間的コヒーレンスとオーディオ-視覚的整合性を改善する。
論文 参考訳(メタデータ) (2024-09-02T09:41:24Z) - High-fidelity and Lip-synced Talking Face Synthesis via Landmark-based Diffusion Model [89.29655924125461]
本稿では,発話顔生成のためのランドマークに基づく新しい拡散モデルを提案する。
まず、音声から唇と顎の目印運動への不明瞭さの少ないマッピングを確立する。
そこで我々はTalkFormerと呼ばれる革新的な条件付けモジュールを導入し、合成された動きをランドマークで表現された動きと整合させる。
論文 参考訳(メタデータ) (2024-08-10T02:58:28Z) - RealTalk: Real-time and Realistic Audio-driven Face Generation with 3D Facial Prior-guided Identity Alignment Network [48.95833484103569]
RealTalkは、音声から表現へのトランスフォーマーであり、高忠実な表現から顔へのフレームワークである。
第1成分として, 口唇運動に関連する個人性および個人内変動の特徴について考察した。
第2のコンポーネントでは、軽量な顔認証アライメント(FIA)モジュールを設計する。
この新しい設計により、高度で非効率な特徴アライメントモジュールに依存することなく、リアルタイムに細部を生成できる。
論文 参考訳(メタデータ) (2024-06-26T12:09:59Z) - NeRFFaceSpeech: One-shot Audio-driven 3D Talking Head Synthesis via Generative Prior [5.819784482811377]
高品質な3D対応音声ヘッドを作成できる新しい方法NeRFFaceSpeechを提案する。
本手法では,1枚の画像に対応する3次元顔特徴空間を作成できる。
また,リパインネットを導入し,その情報不足を補う。
論文 参考訳(メタデータ) (2024-05-09T13:14:06Z) - FaceChain-ImagineID: Freely Crafting High-Fidelity Diverse Talking Faces from Disentangled Audio [45.71036380866305]
我々は、音声を聴く人々の過程を抽象化し、意味のある手がかりを抽出し、単一の音声から動的に音声に一貫性のある発話顔を生成する。
ひとつはアイデンティティ、コンテンツ、感情をエンタングルドオーディオから効果的に切り離すことであり、もう一つは動画内多様性とビデオ間の一貫性を維持することである。
本稿では,3つのトレーニング可能なアダプタと凍結遅延拡散モデルとのフレキシブルな統合を含む,制御可能なコヒーレントフレーム生成を提案する。
論文 参考訳(メタデータ) (2024-03-04T09:59:48Z) - SAiD: Speech-driven Blendshape Facial Animation with Diffusion [6.4271091365094515]
大規模なビジュアルオーディオデータセットが不足しているため、音声駆動の3D顔アニメーションは困難である。
拡散モデル (SAiD) を用いた音声駆動型3次元顔アニメーションを提案する。
論文 参考訳(メタデータ) (2023-12-25T04:40:32Z) - DualTalker: A Cross-Modal Dual Learning Approach for Speech-Driven 3D
Facial Animation [10.73030153404956]
データ利用効率を向上させるために,DualTalkerと呼ばれるクロスモーダルなデュアルラーニングフレームワークを提案する。
このフレームワークは、主要なタスク(オーディオ駆動の顔アニメーション)とその2つのタスク(リップ読み取り)との共同で訓練され、一般的なオーディオ/モーションエンコーダコンポーネントを共有する。
我々の手法は、定性的かつ定量的に現在の最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-11-08T15:39:56Z) - GeneFace++: Generalized and Stable Real-Time Audio-Driven 3D Talking
Face Generation [71.73912454164834]
音声-リップ同期の汎用化, 画質の向上, システム効率の向上が期待できる。
NeRFは、数分間のトレーニングビデオで高忠実で3D一貫性のある会話顔生成を実現することができるため、この分野で一般的な技術となっている。
そこで我々は,これらの課題に対処するためにGeneFace++を提案し,ピッチの輪郭を補助的特徴として利用し,顔の動き予測プロセスに時間的損失を導入する。
論文 参考訳(メタデータ) (2023-05-01T12:24:09Z) - Pose-Controllable Talking Face Generation by Implicitly Modularized
Audio-Visual Representation [96.66010515343106]
ポーズ制御可能な発話顔を生成するためのクリーンで効果的なフレームワークを提案する。
我々は1枚の写真のみを識別基準として生の顔画像を操作する。
私達のモデルに極度な視野の堅牢性および話す表面前部化を含む複数の高度の機能があります。
論文 参考訳(メタデータ) (2021-04-22T15:10:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。