論文の概要: Aligning Vision to Language: Text-Free Multimodal Knowledge Graph Construction for Enhanced LLMs Reasoning
- arxiv url: http://arxiv.org/abs/2503.12972v1
- Date: Mon, 17 Mar 2025 09:31:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:35:01.259939
- Title: Aligning Vision to Language: Text-Free Multimodal Knowledge Graph Construction for Enhanced LLMs Reasoning
- Title(参考訳): 言語への適応:LLM推論のためのテキストフリーマルチモーダル知識グラフ構築
- Authors: Junming Liu, Siyuan Meng, Yanting Gao, Song Mao, Pinlong Cai, Guohang Yan, Yirong Chen, Zilin Bian, Botian Shi, Ding Wang,
- Abstract要約: LLM(Large Language Models)におけるマルチモーダル推論は、不完全な知識と幻覚に苦しむ。
本稿では,マルチモーダルな知識グラフを構築するための新しいアプローチであるVaLiK(Vision-Align-to-Language Integrated Knowledge Graph)を提案する。
- 参考スコア(独自算出の注目度): 10.761218096540976
- License:
- Abstract: Multimodal reasoning in Large Language Models (LLMs) struggles with incomplete knowledge and hallucination artifacts, challenges that textual Knowledge Graphs (KGs) only partially mitigate due to their modality isolation. While Multimodal Knowledge Graphs (MMKGs) promise enhanced cross-modal understanding, their practical construction is impeded by semantic narrowness of manual text annotations and inherent noise in visual-semantic entity linkages. In this paper, we propose Vision-align-to-Language integrated Knowledge Graph (VaLiK), a novel approach for constructing MMKGs that enhances LLMs reasoning through cross-modal information supplementation. Specifically, we cascade pre-trained Vision-Language Models (VLMs) to align image features with text, transforming them into descriptions that encapsulate image-specific information. Furthermore, we developed a cross-modal similarity verification mechanism to quantify semantic consistency, effectively filtering out noise introduced during feature alignment. Even without manually annotated image captions, the refined descriptions alone suffice to construct the MMKG. Compared to conventional MMKGs construction paradigms, our approach achieves substantial storage efficiency gains while maintaining direct entity-to-image linkage capability. Experimental results on multimodal reasoning tasks demonstrate that LLMs augmented with VaLiK outperform previous state-of-the-art models. Our code is published at https://github.com/Wings-Of-Disaster/VaLiK.
- Abstract(参考訳): LLM(Large Language Models)におけるマルチモーダル推論は、不完全な知識と幻覚に苦しむものであり、テキスト知識グラフ(KG)がモダリティ分離によって部分的に緩和されるという課題である。
マルチモーダル知識グラフ(MMKG)はクロスモーダル理解の強化を約束するが、その実践的な構築は手動のテキストアノテーションのセマンティックな狭さと視覚的意味的エンティティ・リンケージの固有のノイズによって妨げられる。
本稿では,モーダル情報補足によるLLM推論を強化したMMKGを構築するための新しい手法として,VaLiK(Vision-Align-to-Language Integrated Knowledge Graph)を提案する。
具体的には、事前訓練された視覚言語モデル(VLM)を用いて、画像の特徴をテキストと整列させ、画像固有の情報をカプセル化する記述に変換する。
さらに,機能アライメント時に発生するノイズを効果的に除去し,セマンティック一貫性を定量化するクロスモーダル類似性検証機構を開発した。
手動で注釈を付けた画像キャプションがなくても、洗練された記述だけでMMKGを構築するのに十分である。
従来のMMKG構築パラダイムと比較して,本手法は直接エンティティ対イメージのリンク能力を維持しつつ,ストレージ効率を大幅に向上させる。
マルチモーダル推論タスクの実験結果は、VaLiKで拡張されたLLMが従来の最先端モデルより優れていることを示す。
私たちのコードはhttps://github.com/Wings-Of-Disaster/VaLiK.comで公開されています。
関連論文リスト
- Towards Text-Image Interleaved Retrieval [49.96332254241075]
テキスト画像検索(TIIR)タスクを導入し、クエリと文書をインターリーブしたテキスト画像シーケンスとする。
我々は、自然にインターリーブされたwikiHowチュートリアルに基づいてTIIRベンチマークを構築し、インターリーブされたクエリを生成するために特定のパイプラインを設計する。
異なる粒度で視覚トークンの数を圧縮する新しいMMEを提案する。
論文 参考訳(メタデータ) (2025-02-18T12:00:47Z) - AlignVLM: Bridging Vision and Language Latent Spaces for Multimodal Understanding [63.09928907734156]
AlignVLMは視覚的特徴をテキスト埋め込みの重み付き平均値にマッピングする視覚テキストアライメント手法である。
実験の結果,AlignVLMは先行アライメント法と比較して最先端の性能を実現していることがわかった。
論文 参考訳(メタデータ) (2025-02-03T13:34:51Z) - ARMADA: Attribute-Based Multimodal Data Augmentation [93.05614922383822]
Attribute-based Multimodal Data Augmentation (ARMADA) は、知識誘導による視覚属性の操作による新しいマルチモーダルデータ拡張手法である。
ARMADAは、新しいマルチモーダルデータ生成フレームワークである。 (i) 意味的に一貫性があるがユニークな画像-テキストペア生成のために、シンボリックKBから知識基底属性を抽出する。
これはまた、解釈可能性の向上と現実世界の接地のために外部の知識プロキシを活用する必要性を強調している。
論文 参考訳(メタデータ) (2024-08-19T15:27:25Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - Multi-View Empowered Structural Graph Wordification for Language Models [12.22063024099311]
本稿では,LLM-graphアライメントのためのエンドツーエンドのモダリティアライメントフレームワークについて紹介する。
提案手法は LLM とのトークンレベルアライメントを容易にするために設計されており,グラフの内在的' を理解可能な自然言語に効果的に翻訳することができる。
我々のフレームワークは、LLMとGNN間のトークンレベルのアライメントを実現するための、有望な試みである、ある視覚的解釈可能性、効率、堅牢性を保証する。
論文 参考訳(メタデータ) (2024-06-19T16:43:56Z) - Planting a SEED of Vision in Large Language Model [73.17530130368053]
このSEEDは,大規模言語モデル(LLM)とSEEとDrawを同時に実現する,精巧な画像トークンである。
このバージョンのSEEDは、64のV100 GPUと5Mのパブリックな画像テキストペアを使用して、5.7日間でトレーニングされた。
論文 参考訳(メタデータ) (2023-07-16T13:41:39Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUGは、クロスモーダルな理解と生成のための新しいビジョン言語基盤モデルである。
画像キャプション、画像テキスト検索、視覚的グラウンドリング、視覚的質問応答など、幅広い視覚言語下流タスクの最先端結果を達成する。
論文 参考訳(メタデータ) (2022-05-24T11:52:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。