論文の概要: Test-Time Domain Generalization via Universe Learning: A Multi-Graph Matching Approach for Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2503.13012v1
- Date: Mon, 17 Mar 2025 10:11:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:34:59.759805
- Title: Test-Time Domain Generalization via Universe Learning: A Multi-Graph Matching Approach for Medical Image Segmentation
- Title(参考訳): 宇宙学習によるテスト時間領域の一般化:医用画像セグメンテーションのためのマルチグラフマッチングアプローチ
- Authors: Xingguo Lv, Xingbo Dong, Liwen Wang, Jiewen Yang, Lei Zhao, Bin Pu, Zhe Jin, Xuejun Li,
- Abstract要約: テスト時間適応(TTA)は、未ラベルのテストデータを用いて学習モデルを調整する。
形態情報を導入し,マルチグラフマッチングに基づくフレームワークを提案する。
本手法は,2つの医用画像セグメンテーションベンチマークにおいて,他の最先端手法よりも優れている。
- 参考スコア(独自算出の注目度): 17.49123106322442
- License:
- Abstract: Despite domain generalization (DG) has significantly addressed the performance degradation of pre-trained models caused by domain shifts, it often falls short in real-world deployment. Test-time adaptation (TTA), which adjusts a learned model using unlabeled test data, presents a promising solution. However, most existing TTA methods struggle to deliver strong performance in medical image segmentation, primarily because they overlook the crucial prior knowledge inherent to medical images. To address this challenge, we incorporate morphological information and propose a framework based on multi-graph matching. Specifically, we introduce learnable universe embeddings that integrate morphological priors during multi-source training, along with novel unsupervised test-time paradigms for domain adaptation. This approach guarantees cycle-consistency in multi-matching while enabling the model to more effectively capture the invariant priors of unseen data, significantly mitigating the effects of domain shifts. Extensive experiments demonstrate that our method outperforms other state-of-the-art approaches on two medical image segmentation benchmarks for both multi-source and single-source domain generalization tasks. The source code is available at https://github.com/Yore0/TTDG-MGM.
- Abstract(参考訳): ドメイン一般化(DG)は、ドメインシフトによる事前訓練されたモデルのパフォーマンス低下に大きく対処しているが、現実のデプロイメントでは不足することが多い。
ラベルのないテストデータを用いて学習モデルを調整するテスト時適応(TTA)は、有望な解を示す。
しかし、既存のTTA手法のほとんどは、医用画像に固有の重要な事前知識を見落としているため、医用画像のセグメンテーションにおいて、強力なパフォーマンスを提供するのに苦労している。
この課題に対処するため、形態情報を導入し、マルチグラフマッチングに基づくフレームワークを提案する。
具体的には、マルチソーストレーニングにおける形態学的な先入観を取り入れた学習可能な宇宙埋め込みと、ドメイン適応のための新しい教師なしテストタイムパラダイムを導入する。
このアプローチは、マルチマッチングにおけるサイクル一貫性を保証すると同時に、モデルが目に見えないデータの不変先をより効果的にキャプチャし、ドメインシフトの影響を著しく軽減する。
広汎な実験により,本手法はマルチソース領域と単一ソース領域の一般化タスクにおいて,2つの医用画像セグメンテーションベンチマークにおいて,他の最先端手法よりも優れていることが示された。
ソースコードはhttps://github.com/Yore0/TTDG-MGMで入手できる。
関連論文リスト
- PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
医用画像セグメンテーションのための半教師付き学習フレームワークであるプログレッシブ平均教師(PMT)を提案する。
我々のPMTは、トレーニングプロセスにおいて、堅牢で多様な特徴を学習することで、高忠実な擬似ラベルを生成する。
CT と MRI の異なる2つのデータセットに対する実験結果から,本手法が最先端の医用画像分割法より優れていることが示された。
論文 参考訳(メタデータ) (2024-09-08T15:02:25Z) - DG-TTA: Out-of-domain medical image segmentation through Domain Generalization and Test-Time Adaptation [43.842694540544194]
本稿では、ドメインの一般化とテスト時間適応を組み合わせることで、未確認対象領域で事前学習したモデルを再利用するための非常に効果的なアプローチを提案する。
本手法は,事前訓練した全身CTモデルと組み合わせることで,MR画像を高精度に分割できることを実証する。
論文 参考訳(メタデータ) (2023-12-11T10:26:21Z) - DGM-DR: Domain Generalization with Mutual Information Regularized
Diabetic Retinopathy Classification [40.35834579068518]
トレーニングとテストデータのドメインシフトは、一般的なディープラーニングモデルをトレーニングする上で大きな課題となる。
医用画像領域に事前訓練されたモデルとしてモデル目的関数を再確立するDG法を提案する。
提案手法は,従来の最先端技術よりも平均精度5.25%,標準偏差が低い。
論文 参考訳(メタデータ) (2023-09-18T11:17:13Z) - NormAUG: Normalization-guided Augmentation for Domain Generalization [60.159546669021346]
ディープラーニングのためのNormAUG(Normalization-guided Augmentation)と呼ばれるシンプルで効果的な手法を提案する。
本手法は特徴レベルで多様な情報を導入し,主経路の一般化を改善する。
テスト段階では、アンサンブル戦略を利用して、モデルの補助経路からの予測を組み合わせ、さらなる性能向上を図る。
論文 参考訳(メタデータ) (2023-07-25T13:35:45Z) - Frequency-mixed Single-source Domain Generalization for Medical Image
Segmentation [29.566769388674473]
医用画像セグメンテーションの欠如は、ディープラーニングモデルのための十分なトレーニングデータを集める上での課題となっている。
周波数混合単一ソース領域一般化法(FreeSDG)という新しい手法を提案する。
3つのモードの5つのデータセットに対する実験結果から,提案アルゴリズムの有効性が示された。
論文 参考訳(メタデータ) (2023-07-18T06:44:45Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - Domain Generalization with Adversarial Intensity Attack for Medical
Image Segmentation [27.49427483473792]
実世界のシナリオでは、トレーニング中に露出していない新しいドメインや異なるドメインのデータに遭遇することが一般的である。
ドメイン一般化(Domain Generalization, DG)は、モデルがこれまで見つからなかったドメインからのデータを扱うことを可能にする、有望な方向である。
本稿では,敵対的トレーニングを活用して無限のスタイルでトレーニングデータを生成する,AdverIN(Adversarial Intensity Attack)と呼ばれる新しいDG手法を提案する。
論文 参考訳(メタデータ) (2023-04-05T19:40:51Z) - Single-domain Generalization in Medical Image Segmentation via Test-time
Adaptation from Shape Dictionary [64.5632303184502]
ドメインの一般化は通常、モデル学習のために複数のソースドメインからのデータを必要とする。
本稿では,1つのソースドメインのみで最悪のシナリオ下でモデルを学習し,異なる未確認対象ドメインに直接一般化する,重要な単一ドメインの一般化問題について考察する。
本稿では,領域間で不変なセグメンテーションのセグメンテーション先情報を抽出し,統合する医用画像セグメンテーションにおいて,この問題に対処する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-06-29T08:46:27Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
ほとんどの機械学習アルゴリズムの基本的な前提は、トレーニングとテストデータは、同じ基礎となる分布から引き出されることである。
本研究では,学習データをドメインに構造化し,複数のテスト時間シフトが存在する場合の領域一般化の問題点について考察する。
本稿では、適応リスク最小化(ARM)の枠組みを紹介し、モデルがトレーニング領域に適応することを学ぶことで、効果的な適応のために直接最適化される。
論文 参考訳(メタデータ) (2020-07-06T17:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。