論文の概要: MaskSDM with Shapley values to improve flexibility, robustness, and explainability in species distribution modeling
- arxiv url: http://arxiv.org/abs/2503.13057v1
- Date: Mon, 17 Mar 2025 11:02:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:33:45.042540
- Title: MaskSDM with Shapley values to improve flexibility, robustness, and explainability in species distribution modeling
- Title(参考訳): 種分布モデリングにおける柔軟性,堅牢性,説明可能性向上のためのShapley値を用いたMaskSDM
- Authors: Robin Zbinden, Nina van Tiel, Gencer Sumbul, Chiara Vanalli, Benjamin Kellenberger, Devis Tuia,
- Abstract要約: 種分布モデル(SDM)は生物多様性の研究、保全計画、生態ニッチモデリングにおいて重要な役割を担っている。
マスク付きトレーニング戦略を用いてフレキシブルな予測器選択を可能にする,新しいディープラーニングベースのSDMであるMaskSDMを紹介する。
我々はグローバルなsPlotOpenデータセット上でMaskSDMを評価し,12,738種の分布をモデル化した。
- 参考スコア(独自算出の注目度): 3.428447509258587
- License:
- Abstract: Species Distribution Models (SDMs) play a vital role in biodiversity research, conservation planning, and ecological niche modeling by predicting species distributions based on environmental conditions. The selection of predictors is crucial, strongly impacting both model accuracy and how well the predictions reflect ecological patterns. To ensure meaningful insights, input variables must be carefully chosen to match the study objectives and the ecological requirements of the target species. However, existing SDMs, including both traditional and deep learning-based approaches, often lack key capabilities for variable selection: (i) flexibility to choose relevant predictors at inference without retraining; (ii) robustness to handle missing predictor values without compromising accuracy; and (iii) explainability to interpret and accurately quantify each predictor's contribution. To overcome these limitations, we introduce MaskSDM, a novel deep learning-based SDM that enables flexible predictor selection by employing a masked training strategy. This approach allows the model to make predictions with arbitrary subsets of input variables while remaining robust to missing data. It also provides a clearer understanding of how adding or removing a given predictor affects model performance and predictions. Additionally, MaskSDM leverages Shapley values for precise predictor contribution assessments, improving upon traditional approximations. We evaluate MaskSDM on the global sPlotOpen dataset, modeling the distributions of 12,738 plant species. Our results show that MaskSDM outperforms imputation-based methods and approximates models trained on specific subsets of variables. These findings underscore MaskSDM's potential to increase the applicability and adoption of SDMs, laying the groundwork for developing foundation models in SDMs that can be readily applied to diverse ecological applications.
- Abstract(参考訳): 種分布モデル(SDM)は,環境条件に基づいて種分布を予測することにより,生物多様性研究,保全計画,生態ニッチモデリングにおいて重要な役割を担っている。
予測器の選択は決定的であり、モデル精度と予測が生態系のパターンをいかによく反映するかに大きな影響を及ぼす。
意味のある洞察を得るためには、入力変数を慎重に選択し、対象種の研究目的と生態的要求に適合させなければならない。
しかし、従来型とディープラーニングベースのアプローチを含む既存のSDMには、変数選択のための重要な機能がないことが多い。
一 再訓練することなく、推論において適切な予測子を選択する柔軟性
二 精度を損なうことなく、予測値の不足に対処する堅牢性
三 それぞれの予測者の貢献を解釈し、正確に定量化することができること。
これらの制限を克服するために,マスク付きトレーニング戦略を用いてフレキシブルな予測器選択を可能にする,新しいディープラーニングベースのSDMであるMaskSDMを導入する。
このアプローチにより、モデルは入力変数の任意のサブセットで予測できるが、欠落したデータには頑健である。
また、与えられた予測子の追加や削除がモデルのパフォーマンスや予測にどのように影響するかをより明確に理解する。
さらに、MaskSDMはShapley値を利用して正確な予測値のコントリビューション評価を行い、従来の近似を改善している。
我々はグローバルなsPlotOpenデータセット上でMaskSDMを評価し,12,738種の分布をモデル化した。
この結果から,MaskSDMは,変数の特定の部分集合に基づいて訓練されたモデルと命令に基づく手法より優れることがわかった。
これらの知見は、SDMの適用性と導入性を高めるMaskSDMの可能性を裏付けるものであり、多様な生態学的応用に容易に適用可能なSDMの基礎モデル開発の基礎を築いた。
関連論文リスト
- A recursive Bayesian neural network for constitutive modeling of sands under monotonic loading [0.0]
ジオエンジニアリングにおいて、モデルは様々な負荷条件下での土壌の挙動を記述する上で重要な役割を担っている。
データ駆動型ディープラーニング(DL)モデルは、予測モデルを開発するための有望な代替手段を提供する。
予測が主眼となる場合、訓練されたDLモデルの予測不確実性を定量化することは、情報的意思決定に不可欠である。
論文 参考訳(メタデータ) (2025-01-17T10:15:03Z) - Quantifying the Prediction Uncertainty of Machine Learning Models for Individual Data [2.1248439796866228]
本研究では,線形回帰とニューラルネットワークに対するpNMLの学習可能性について検討する。
pNMLは様々なタスクにおけるこれらのモデルの性能と堅牢性を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-12-10T13:58:19Z) - CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
本研究は認知拡散確率モデル(CogDPM)を紹介する。
CogDPMは拡散モデルの階層的サンプリング能力に基づく精度推定法と拡散モデル固有の性質から推定される精度重み付きガイダンスを備える。
我々は,Universal Kindomの降水量と表面風速データセットを用いた実世界の予測タスクにCogDPMを適用した。
論文 参考訳(メタデータ) (2024-05-03T15:54:50Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
本稿では,分布外ケースに対する頑健な一般化性を有する動き予測のための解釈可能な生成モデルを提案する。
このモデルでは, 長期目的地の空間分布を推定することにより, 目標駆動動作予測を実現する。
動き予測データセットの実験は、適合したモデルが解釈可能で一般化可能であることを検証した。
論文 参考訳(メタデータ) (2024-03-10T04:16:04Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Prediction under Latent Subgroup Shifts with High-Dimensional
Observations [30.433078066683848]
遅延シフト適応を用いたグラフィカルモデルにおける新しい予測手法を提案する。
RPMの新規な形態は、ソース環境における因果潜伏構造を特定し、ターゲットの予測に適切に適応する。
論文 参考訳(メタデータ) (2023-06-23T12:26:24Z) - Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - Autoregressive Quantile Flows for Predictive Uncertainty Estimation [7.184701179854522]
高次元変数上の確率モデルの柔軟なクラスである自己回帰量子フローを提案する。
これらのモデルは、適切なスコアリングルールに基づいて、新しい目的を用いて訓練された自己回帰フローの例である。
論文 参考訳(メタデータ) (2021-12-09T01:11:26Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
確率的負荷予測(PLF)は、スマートエネルギーグリッドの効率的な管理に必要な拡張ツールチェーンの重要なコンポーネントです。
ベイジアン混合密度ネットワークを枠とした新しいPLFアプローチを提案する。
後方分布の信頼性と計算にスケーラブルな推定を行うため,平均場変動推定と深層アンサンブルを統合した。
論文 参考訳(メタデータ) (2020-12-23T16:21:34Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
本稿では,モデルアーキテクチャ,正規化手法,損失関数が分類結果の予測性能および信頼性に与える影響について検討する。
その結果,高い成功率を達成するためには,正則化と推論手法の正しい選択が重要であることが明らかとなった。
論文 参考訳(メタデータ) (2020-03-17T10:13:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。