論文の概要: Enhancing zero-shot learning in medical imaging: integrating clip with advanced techniques for improved chest x-ray analysis
- arxiv url: http://arxiv.org/abs/2503.13134v1
- Date: Mon, 17 Mar 2025 12:59:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:30:13.906647
- Title: Enhancing zero-shot learning in medical imaging: integrating clip with advanced techniques for improved chest x-ray analysis
- Title(参考訳): 医用画像におけるゼロショット学習の強化:胸部X線分析改善のためのクリップと高度な技術の統合
- Authors: Prakhar Bhardwaj, Sheethal Bhat, Andreas Maier,
- Abstract要約: CLIP(Contrastive Language- Image Pre-Training)をMomentum Contrast(MoCo)と統合することにより、医用画像におけるゼロショット学習の強化に向けた既存のアプローチを拡張した。
本手法は, クラス不均衡データセットとラベルなしデータセットによる課題に対処し, 肺病変の検出精度の向上を実現する。
- 参考スコア(独自算出の注目度): 3.4916237834391874
- License:
- Abstract: Due to the large volume of medical imaging data, advanced AI methodologies are needed to assist radiologists in diagnosing thoracic diseases from chest X-rays (CXRs). Existing deep learning models often require large, labeled datasets, which are scarce in medical imaging due to the time-consuming and expert-driven annotation process. In this paper, we extend the existing approach to enhance zero-shot learning in medical imaging by integrating Contrastive Language-Image Pre-training (CLIP) with Momentum Contrast (MoCo), resulting in our proposed model, MoCoCLIP. Our method addresses challenges posed by class-imbalanced and unlabeled datasets, enabling improved detection of pulmonary pathologies. Experimental results on the NIH ChestXray14 dataset demonstrate that MoCoCLIP outperforms the state-of-the-art CheXZero model, achieving relative improvement of approximately 6.5%. Furthermore, on the CheXpert dataset, MoCoCLIP demonstrates superior zero-shot performance, achieving an average AUC of 0.750 compared to CheXZero with 0.746 AUC, highlighting its enhanced generalization capabilities on unseen data.
- Abstract(参考訳): 医療画像データの量が多いため、放射線医が胸部X線(CXR)から胸部疾患を診断する際、高度なAI手法が必要である。
既存のディープラーニングモデルは、しばしば大きなラベル付きデータセットを必要とします。
本稿では,Mmentum Contrast(MoCo)とCLIP(Contrastive Language- Image Pre-Training)を統合することで,医用画像におけるゼロショット学習を向上する既存のアプローチを拡張し,提案モデルであるMoCoCLIPを提案する。
本手法は, クラス不均衡データセットとラベルなしデータセットによる課題に対処し, 肺病変の検出精度の向上を実現する。
NIH ChestXray14データセットの実験結果によると、MoCoCLIPは最先端のCheXZeroモデルより優れており、約6.5%の相対的な改善が達成されている。
さらに、CheXpertデータセットでは、MoCoCLIPはゼロショットのパフォーマンスが優れており、CheXZeroの0.746 AUCと比較して平均0.750のAUCを実現している。
関連論文リスト
- Benchmarking Robustness of Contrastive Learning Models for Medical Image-Report Retrieval [2.9801426627439453]
本研究では,CLIP,CXR-RePaiR,MedCLIP,CXR-CLIPの4つの最先端コントラスト学習モデルの堅牢性を評価する。
以上の結果から,全ての評価モデルは分布外データに非常に敏感であることが判明した。
これらの制限に対処することにより、医療応用のためのより信頼性の高いクロスドメイン検索モデルを構築することができる。
論文 参考訳(メタデータ) (2025-01-15T20:37:04Z) - AttCDCNet: Attention-enhanced Chest Disease Classification using X-Ray Images [0.0]
X線画像診断のための新しい検出モデルtextbfAttCDCNetを提案する。
提案されたモデルは、新型コロナウイルスのラジオグラフィーデータセットでそれぞれ94.94%、95.14%、94.53%の精度、精度、リコールを達成した。
論文 参考訳(メタデータ) (2024-10-20T16:08:20Z) - A foundation model for generalizable disease diagnosis in chest X-ray images [40.9095393430871]
CXRBaseは,非ラベリングなCXR画像から多目的表現を学習するための基礎モデルである。
CXRBaseは1.04百万の未ラベルのCXRイメージのデータセットでトレーニングされている。
ラベル付きデータで微調整され、疾患検出の性能を高める。
論文 参考訳(メタデータ) (2024-10-11T14:41:27Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
結核(TB)は世界的な健康上の脅威であり、毎年何百万人もの死者を出している。
深層学習を用いたコンピュータ支援結核診断 (CTD) は有望であるが, 限られたトレーニングデータによって進行が妨げられている。
結核X線(TBX11K)データセットは11,200個の胸部X線(CXR)画像とそれに対応するTB領域のバウンディングボックスアノテーションを含む。
このデータセットは、高品質なCTDのための洗練された検出器のトレーニングを可能にする。
論文 参考訳(メタデータ) (2023-07-06T08:27:48Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
本稿では,正対損失緩和とランダムな文サンプリングを含む新たな微調整手法を提案する。
提案手法は,胸部X線データセットと3つの事前訓練モデル間のゼロショット病理分類を一貫して改善する。
論文 参考訳(メタデータ) (2022-12-14T06:04:18Z) - Multi-Feature Vision Transformer via Self-Supervised Representation
Learning for Improvement of COVID-19 Diagnosis [2.3513645401551333]
CXR画像からのCOVID-19感染症の診断における自己教師型学習の有効性について検討した。
我々は、元のCXR画像とそれに対応する拡張されたローカル位相CXR画像から情報を学ぶために、クロスアテンション機構をデプロイする。
局所位相に基づく拡張CXR画像を活用することで,ベースライン型自己教師学習モデルの性能をさらに向上できることを示す。
論文 参考訳(メタデータ) (2022-08-03T05:02:47Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。