Are LLMs (Really) Ideological? An IRT-based Analysis and Alignment Tool for Perceived Socio-Economic Bias in LLMs
- URL: http://arxiv.org/abs/2503.13149v1
- Date: Mon, 17 Mar 2025 13:20:09 GMT
- Title: Are LLMs (Really) Ideological? An IRT-based Analysis and Alignment Tool for Perceived Socio-Economic Bias in LLMs
- Authors: Jasmin Wachter, Michael Radloff, Maja Smolej, Katharina Kinder-Kurlanda,
- Abstract summary: We introduce an Item Response Theory (IRT)-based framework to detect and quantify socioeconomic bias in large language models (LLMs)<n>IRT accounts for item difficulty, improving ideological bias estimation.<n>This empirically validated framework enhances AI alignment research and promotes fairer AI governance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an Item Response Theory (IRT)-based framework to detect and quantify socioeconomic bias in large language models (LLMs) without relying on subjective human judgments. Unlike traditional methods, IRT accounts for item difficulty, improving ideological bias estimation. We fine-tune two LLM families (Meta-LLaMa 3.2-1B-Instruct and Chat- GPT 3.5) to represent distinct ideological positions and introduce a two-stage approach: (1) modeling response avoidance and (2) estimating perceived bias in answered responses. Our results show that off-the-shelf LLMs often avoid ideological engagement rather than exhibit bias, challenging prior claims of partisanship. This empirically validated framework enhances AI alignment research and promotes fairer AI governance.
Related papers
- FairReason: Balancing Reasoning and Social Bias in MLLMs [50.618158642714505]
Multimodal Large Language Models (MLLMs) already achieve state-of-the-art results across a wide range of tasks and modalities.<n>Recent studies explore advanced prompting schemes and post-training fine-tuning to push their reasoning ability further.
arXiv Detail & Related papers (2025-07-30T19:57:22Z) - Reasoning Models Can be Easily Hacked by Fake Reasoning Bias [59.79548223686273]
We introduce THEATER, a comprehensive benchmark to evaluate Reasoning Theater Bias (RTB)<n>We investigate six bias types including Simple Cues and Fake Chain-of-Thought.<n>We identify'shallow reasoning'-plausible but flawed arguments-as the most potent form of RTB.
arXiv Detail & Related papers (2025-07-18T09:06:10Z) - Democratic or Authoritarian? Probing a New Dimension of Political Biases in Large Language Models [72.89977583150748]
We propose a novel methodology to assess how Large Language Models align with broader geopolitical value systems.<n>We find that LLMs generally favor democratic values and leaders, but exhibit increases favorability toward authoritarian figures when prompted in Mandarin.
arXiv Detail & Related papers (2025-06-15T07:52:07Z) - Relative Bias: A Comparative Framework for Quantifying Bias in LLMs [29.112649816695203]
Relative Bias is a method designed to assess how an LLM's behavior deviates from other LLMs within a specified target domain.<n>We introduce two complementary methodologies: (1) Embedding Transformation analysis, which captures relative bias patterns through sentence representations over the embedding space, and (2) LLM-as-a-Judge, which employs a language model to evaluate outputs comparatively.<n>Applying our framework to several case studies on bias and alignment scenarios following by statistical tests for validation, we find strong alignment between the two scoring methods.
arXiv Detail & Related papers (2025-05-22T01:59:54Z) - Decoding the Mind of Large Language Models: A Quantitative Evaluation of Ideology and Biases [0.276240219662896]
We propose a novel framework for evaluating Large Language Models (LLMs)<n>By applying our framework to ChatGPT and Gemini, findings revealed that while LLMs generally maintain consistent opinions on many topics, their ideologies differ across models and languages.<n>Both models also exhibited problematic biases, unethical or unfair claims, which might have negative societal impacts.
arXiv Detail & Related papers (2025-05-18T00:52:06Z) - Cognitive Debiasing Large Language Models for Decision-Making [71.2409973056137]
Large language models (LLMs) have shown potential in supporting decision-making applications.
We propose a cognitive debiasing approach, called self-debiasing, that enhances the reliability of LLMs.
Our method follows three sequential steps -- bias determination, bias analysis, and cognitive debiasing -- to iteratively mitigate potential cognitive biases in prompts.
arXiv Detail & Related papers (2025-04-05T11:23:05Z) - Through the LLM Looking Glass: A Socratic Self-Assessment of Donkeys, Elephants, and Markets [42.55423041662188]
The study aims to directly measure the models' biases rather than relying on external interpretations.
Our results reveal a consistent preference of Democratic over Republican positions across all models.
biases vary among Western LLMs, while those developed in China lean more strongly toward socialism.
arXiv Detail & Related papers (2025-03-20T19:40:40Z) - Implicit Bias in LLMs: A Survey [2.07180164747172]
This paper provides a comprehensive review of the existing literature on implicit bias in Large language models.
We begin by introducing key concepts, theories and methods related to implicit bias in psychology.
We categorize detection methods into three primary approaches: word association, task-oriented text generation and decision-making.
arXiv Detail & Related papers (2025-03-04T16:49:37Z) - What Makes In-context Learning Effective for Mathematical Reasoning: A Theoretical Analysis [81.15503859645149]
In this paper, we aim to theoretically analyze the impact of in-context demonstrations on large language models' reasoning performance.
We propose a straightforward, generalizable, and low-complexity demonstration selection method named LMS3.
arXiv Detail & Related papers (2024-12-11T11:38:11Z) - Bias in Large Language Models: Origin, Evaluation, and Mitigation [4.606140332500086]
Large Language Models (LLMs) have revolutionized natural language processing, but their susceptibility to biases poses significant challenges.
This comprehensive review examines the landscape of bias in LLMs, from its origins to current mitigation strategies.
Ethical and legal implications of biased LLMs are discussed, emphasizing potential harms in real-world applications such as healthcare and criminal justice.
arXiv Detail & Related papers (2024-11-16T23:54:53Z) - Gender Bias of LLM in Economics: An Existentialism Perspective [1.024113475677323]
This paper investigates gender bias in large language models (LLMs)
LLMs reinforce gender stereotypes even without explicit gender markers.
We argue that bias in LLMs is not an unintended flaw but a systematic result of their rational processing.
arXiv Detail & Related papers (2024-10-14T01:42:01Z) - Evaluating Implicit Bias in Large Language Models by Attacking From a Psychometric Perspective [66.34066553400108]
We conduct a rigorous evaluation of large language models' implicit bias towards certain demographics.<n>Inspired by psychometric principles, we propose three attack approaches, i.e., Disguise, Deception, and Teaching.<n>Our methods can elicit LLMs' inner bias more effectively than competitive baselines.
arXiv Detail & Related papers (2024-06-20T06:42:08Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - Prompting Fairness: Integrating Causality to Debias Large Language Models [19.76215433424235]
Large language models (LLMs) are susceptible to generating biased and discriminatory responses.<n>We propose a causality-guided debiasing framework to tackle social biases.
arXiv Detail & Related papers (2024-03-13T17:46:28Z) - Large Language Models as an Indirect Reasoner: Contrapositive and Contradiction for Automated Reasoning [74.90592233107712]
We propose a Direct-Indirect Reasoning (DIR) method, which considers Direct Reasoning (DR) and Indirect Reasoning (IR) as multiple parallel reasoning paths that are merged to derive the final answer.<n>Our DIR method is simple yet effective and can be straightforwardly integrated with existing variants of CoT methods.
arXiv Detail & Related papers (2024-02-06T03:41:12Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
arXiv Detail & Related papers (2023-11-15T00:02:25Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.