論文の概要: MAME: Multidimensional Adaptive Metamer Exploration with Human Perceptual Feedback
- arxiv url: http://arxiv.org/abs/2503.13212v1
- Date: Mon, 17 Mar 2025 14:23:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 15:59:19.827948
- Title: MAME: Multidimensional Adaptive Metamer Exploration with Human Perceptual Feedback
- Title(参考訳): MAME:人間の知覚フィードバックを用いた多次元適応メタマー探索
- Authors: Mina Kamao, Hayato Ono, Ayumu Yamashita, Kaoru Amano, Masataka Sawayama,
- Abstract要約: 機能的アライメントを探索するための広く採用されているアプローチは、人間とモデルの両方のメタマーを特定することである。
本稿では,ヒトメタマー空間の高次元直接探索を可能にする多次元適応メタマー探索フレームワークを提案する。
我々のフレームワークは、神経科学における解釈可能なAIの開発と脳機能の理解に寄与する可能性がある。
- 参考スコア(独自算出の注目度): 1.1317941257922182
- License:
- Abstract: Alignment between human brain networks and artificial models is actively studied in machine learning and neuroscience. A widely adopted approach to explore their functional alignment is to identify metamers for both humans and models. Metamers refer to input stimuli that are physically different but equivalent within a given system. If a model's metameric space completely matched the human metameric space, the model would achieve functional alignment with humans. However, conventional methods lack direct ways to search for human metamers. Instead, researchers first develop biologically inspired models and then infer about human metamers indirectly by testing whether model metamers also appear as metamers to humans. Here, we propose the Multidimensional Adaptive Metamer Exploration (MAME) framework, enabling direct high-dimensional exploration of human metameric space. MAME leverages online image generation guided by human perceptual feedback. Specifically, it modulates reference images across multiple dimensions by leveraging hierarchical responses from convolutional neural networks (CNNs). Generated images are presented to participants whose perceptual discriminability is assessed in a behavioral task. Based on participants' responses, subsequent image generation parameters are adaptively updated online. Using our MAME framework, we successfully measured a human metameric space of over fifty dimensions within a single experiment. Experimental results showed that human discrimination sensitivity was lower for metameric images based on low-level features compared to high-level features, which image contrast metrics could not explain. The finding suggests that the model computes low-level information not essential for human perception. Our framework has the potential to contribute to developing interpretable AI and understanding of brain function in neuroscience.
- Abstract(参考訳): 人間の脳ネットワークと人工モデルとの整合性は、機械学習と神経科学において活発に研究されている。
機能的アライメントを探索するための広く採用されているアプローチは、人間とモデルの両方のメタマーを特定することである。
メタマーとは、物理的に異なるが、特定のシステム内で等価な入力刺激を指す。
モデルのメタマー空間が人間のメタマー空間と完全に一致する場合、モデルが人間と機能的なアライメントを達成する。
しかし、従来の手法ではヒトのメタマーを直接検索する方法が欠如している。
その代わり、研究者たちはまず生物にインスパイアされたモデルを開発し、その後、モデルメタマーがヒトにメタマーとして現れるかどうかをテストすることによって、ヒトのメタマーについて間接的に推測する。
本稿では,MAME(Multidimensional Adaptive Metamer Exploration)フレームワークを提案する。
MAMEは人間の知覚フィードバックによって導かれるオンライン画像生成を利用する。
具体的には、畳み込みニューラルネットワーク(CNN)からの階層的応答を活用することで、複数の次元にわたる参照画像を変調する。
行動課題において知覚的識別性が評価された被験者に生成画像を提示する。
参加者の反応に基づいて、その後の画像生成パラメータをオンラインで適応的に更新する。
MAMEフレームワークを用いて、1つの実験で50次元以上のヒトのメタメトリ空間を計測した。
その結果, 画像コントラストの指標が説明できない高次特徴に比べて, 低次特徴に基づくメタマー画像に対する人間の識別感度が低かった。
この結果は、人間の知覚に欠かせない低レベル情報を計算することを示唆している。
我々のフレームワークは、神経科学における解釈可能なAIの開発と脳機能の理解に寄与する可能性がある。
関連論文リスト
- Evaluating Multiview Object Consistency in Humans and Image Models [68.36073530804296]
我々は、物体の形状に関するゼロショット視覚的推論を必要とする認知科学の実験的設計を活用する。
我々は500人以上の参加者から行動データの35万件の試行を収集した。
次に、一般的な視覚モデルの性能を評価する。
論文 参考訳(メタデータ) (2024-09-09T17:59:13Z) - Teaching CORnet Human fMRI Representations for Enhanced Model-Brain Alignment [2.035627332992055]
認知神経科学において広く用いられる技術として機能的磁気共鳴イメージング(fMRI)は、視覚知覚の過程における人間の視覚野の神経活動を記録することができる。
本研究では,SOTAビジョンモデルCORnetに基づくモデルであるReAlnet-fMRIを提案する。
fMRIを最適化したReAlnet-fMRIは、CORnetと制御モデルの両方においてヒトの脳との類似性が高く、また、内・内・対モダリティモデル脳(fMRI、EEG)も高い類似性を示した。
論文 参考訳(メタデータ) (2024-07-15T03:31:42Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
被験者のfMRIデータを入力として利用する新しい3Dオブジェクト表現学習手法であるBrain3Dを設計する。
我々は,人間の視覚系の各領域の異なる機能的特徴を,我々のモデルが捉えていることを示す。
予備評価は、Brain3Dがシミュレーションシナリオで障害した脳領域を正常に識別できることを示唆している。
論文 参考訳(メタデータ) (2024-05-24T06:06:11Z) - Psychometry: An Omnifit Model for Image Reconstruction from Human Brain Activity [60.983327742457995]
人間の脳活動から見るイメージを再構築することで、人間とコンピュータのビジョンをBrain-Computer Interfaceを通して橋渡しする。
異なる被験者から得られた機能的磁気共鳴イメージング(fMRI)による画像再構成のための全能モデルであるサイコメトリを考案した。
論文 参考訳(メタデータ) (2024-03-29T07:16:34Z) - Achieving More Human Brain-Like Vision via Human EEG Representational Alignment [1.811217832697894]
非侵襲脳波に基づく人間の脳活動に対応する視覚モデル「Re(presentational)Al(ignment)net」を提案する。
我々の革新的な画像から脳への多層符号化フレームワークは、複数のモデル層を最適化することにより、人間の神経のアライメントを向上する。
我々の発見は、ReAlnetが人工と人間の視覚のギャップを埋め、より脳に似た人工知能システムへの道を歩むブレークスルーを表していることを示唆している。
論文 参考訳(メタデータ) (2024-01-30T18:18:41Z) - Computing a human-like reaction time metric from stable recurrent vision
models [11.87006916768365]
我々は,刺激計算可能なタスク最適化モデルから,反応時間の計算量を構築するための汎用方法論をスケッチする。
評価基準は,4つの異なる視覚的意思決定タスクの刺激操作において,人間の反応時間のパターンと一致していることを示す。
この研究は、他の様々な認知タスクの文脈において、モデルと人間の視覚戦略の時間的アライメントを探索する方法を開拓する。
論文 参考訳(メタデータ) (2023-06-20T14:56:02Z) - Evaluating alignment between humans and neural network representations in image-based learning tasks [5.657101730705275]
トレーニング済みの860ドルのニューラルネットワークモデルの表現が、人間の学習軌跡にどのようにマッピングされているかテストしました。
トレーニングデータセットのサイズは人間の選択に沿った中核的な決定要因であるのに対し、マルチモーダルデータ(テキストと画像)による対照的なトレーニングは、人間の一般化を予測するために現在公開されているモデルの一般的な特徴であることがわかった。
結論として、事前訓練されたニューラルネットワークは、タスク間で伝達可能な認知の基本的な側面を捉えているように見えるため、認知モデルのための表現を抽出するのに役立つ。
論文 参考訳(メタデータ) (2023-06-15T08:18:29Z) - Semantic Brain Decoding: from fMRI to conceptually similar image
reconstruction of visual stimuli [0.29005223064604074]
本稿では,意味的・文脈的類似性にも依存する脳復号法を提案する。
我々は、自然視のfMRIデータセットを使用し、人間の視覚におけるボトムアップとトップダウンの両方のプロセスの存在にインスパイアされたディープラーニングデコードパイプラインを作成します。
視覚刺激の再現は, それまでの文献において, 本来の内容とセマンティックレベルで非常によく一致し, 芸術の状態を超越している。
論文 参考訳(メタデータ) (2022-12-13T16:54:08Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3Dポーズデータは、手動で介入することなく、マルチビュービデオシーケンスから確実に抽出できる。
本稿では,ニューラルアクション表現の符号化を,ニューラルアクションと行動拡張のセットと共に導くために使用することを提案する。
ドメインギャップを減らすために、トレーニングの間、同様の行動をしているように見える動物間で神経と行動のデータを取り替える。
論文 参考訳(メタデータ) (2021-12-02T12:45:46Z) - Fooling the primate brain with minimal, targeted image manipulation [67.78919304747498]
本稿では、行動に反映される神経活動と知覚の両方の変化をもたらす、最小限の標的画像摂動を生成するための一連の手法を提案する。
我々の研究は、敵対的攻撃、すなわち最小限のターゲットノイズによる画像の操作で同じ目標を共有し、ANNモデルに画像の誤分類を誘導する。
論文 参考訳(メタデータ) (2020-11-11T08:30:54Z) - MELD: Meta-Reinforcement Learning from Images via Latent State Models [109.1664295663325]
我々は,遅延状態モデルで推論を行う画像からメタRLのアルゴリズムを開発し,新しいスキルを素早く獲得する。
MELDは、画像から現実のロボット制御設定でトレーニングされた最初のメタRLアルゴリズムである。
論文 参考訳(メタデータ) (2020-10-26T23:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。