On Local Posterior Structure in Deep Ensembles
- URL: http://arxiv.org/abs/2503.13296v1
- Date: Mon, 17 Mar 2025 15:41:39 GMT
- Title: On Local Posterior Structure in Deep Ensembles
- Authors: Mikkel Jordahn, Jonas Vestergaard Jensen, Mikkel N. Schmidt, Michael Riis Andersen,
- Abstract summary: Deep ensembles of BNNs (DEs) are known to improve calibration.<n>We find that when the ensembles grow large enough, DEs consistently outperform DE-BNNs on in-distribution data.<n>As a final contribution, we open-source the large pool of trained models to facilitate further research on this topic.
- Score: 5.03927767211033
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Bayesian Neural Networks (BNNs) often improve model calibration and predictive uncertainty quantification compared to point estimators such as maximum-a-posteriori (MAP). Similarly, deep ensembles (DEs) are also known to improve calibration, and therefore, it is natural to hypothesize that deep ensembles of BNNs (DE-BNNs) should provide even further improvements. In this work, we systematically investigate this across a number of datasets, neural network architectures, and BNN approximation methods and surprisingly find that when the ensembles grow large enough, DEs consistently outperform DE-BNNs on in-distribution data. To shine light on this observation, we conduct several sensitivity and ablation studies. Moreover, we show that even though DE-BNNs outperform DEs on out-of-distribution metrics, this comes at the cost of decreased in-distribution performance. As a final contribution, we open-source the large pool of trained models to facilitate further research on this topic.
Related papers
- Quantification of Uncertainties in Probabilistic Deep Neural Network by Implementing Boosting of Variational Inference [0.38366697175402226]
Boosted Bayesian Neural Networks (BBNN) is a novel approach that enhances neural network weight distribution approximations.
BBNN achieves 5% higher accuracy compared to conventional neural networks.
arXiv Detail & Related papers (2025-03-18T05:11:21Z) - Tighter Bounds on the Information Bottleneck with Application to Deep
Learning [6.206127662604578]
Deep Neural Nets (DNNs) learn latent representations induced by their downstream task, objective function, and other parameters.
The Information Bottleneck (IB) provides a hypothetically optimal framework for data modeling, yet it is often intractable.
Recent efforts combined DNNs with the IB by applying VAE-inspired variational methods to approximate bounds on mutual information, resulting in improved robustness to adversarial attacks.
arXiv Detail & Related papers (2024-02-12T13:24:32Z) - Adversarial Attacks to Latent Representations of Distributed Neural Networks in Split Computing [7.6340310234573465]
Distributed deep neural networks (DNNs) have been shown to reduce the computational burden of mobile devices and decrease the end-to-end inference latency in edge computing scenarios.
This paper fills the existing research gap by rigorously analyzing the robustness of distributed DNNs against adversarial action.
arXiv Detail & Related papers (2023-09-29T17:01:29Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
We show that when the data distribution is well-separated, DNNs can achieve Bayes-optimal test error for classification.
Our results indicate that interpolating with smoother functions leads to better generalization.
arXiv Detail & Related papers (2023-05-30T19:37:44Z) - Constraining cosmological parameters from N-body simulations with
Variational Bayesian Neural Networks [0.0]
Multiplicative normalizing flows (MNFs) are a family of approximate posteriors for the parameters of BNNs.
We have compared MNFs with respect to the standard BNNs, and the flipout estimator.
MNFs provide more realistic predictive distribution closer to the true posterior mitigating the bias introduced by the variational approximation.
arXiv Detail & Related papers (2023-01-09T16:07:48Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNs neglect the intrinsic bilinear relationship of real-valued weights and scale factors.
Our work is the first attempt to optimize BNNs from the bilinear perspective.
We obtain robust RBONNs, which show impressive performance over state-of-the-art BNNs on various models and datasets.
arXiv Detail & Related papers (2022-09-04T06:45:33Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data.
There has been a dearth of comprehensive studies examining the impact of intrinsic structures within spiking computations.
This work delves deep into the intrinsic structures of SNNs, by elucidating their influence on the expressivity of SNNs.
arXiv Detail & Related papers (2022-06-21T09:42:30Z) - Searching Similarity Measure for Binarized Neural Networks [14.847148292246374]
Binarized Neural Networks (BNNs) are a promising model to be deployed in resource-limited devices.
BNNs suffer from non-trivial accuracy degradation, limiting its applicability in various domains.
We propose an automatic searching method, based on genetic algorithm, for BNN-tailored similarity measure.
arXiv Detail & Related papers (2022-06-05T06:53:53Z) - Masked Bayesian Neural Networks : Computation and Optimality [1.3649494534428745]
We propose a novel sparse Bayesian neural network (BNN) which searches a good deep neural network with an appropriate complexity.
We employ the masking variables at each node which can turn off some nodes according to the posterior distribution to yield a nodewise sparse DNN.
By analyzing several benchmark datasets, we illustrate that the proposed BNN performs well compared to other existing methods.
arXiv Detail & Related papers (2022-06-02T02:59:55Z) - A Biased Graph Neural Network Sampler with Near-Optimal Regret [57.70126763759996]
Graph neural networks (GNN) have emerged as a vehicle for applying deep network architectures to graph and relational data.
In this paper, we build upon existing work and treat GNN neighbor sampling as a multi-armed bandit problem.
We introduce a newly-designed reward function that introduces some degree of bias designed to reduce variance and avoid unstable, possibly-unbounded payouts.
arXiv Detail & Related papers (2021-03-01T15:55:58Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
We present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution.
Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.515% on BNNs.
Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods.
arXiv Detail & Related papers (2021-02-17T18:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.