Scale Efficient Training for Large Datasets
- URL: http://arxiv.org/abs/2503.13385v1
- Date: Mon, 17 Mar 2025 17:13:43 GMT
- Title: Scale Efficient Training for Large Datasets
- Authors: Qing Zhou, Junyu Gao, Qi Wang,
- Abstract summary: To remove low-value samples, SeTa first performs random pruning to eliminate redundant samples, then clusters the remaining samples according to their learning difficulty measured by loss.<n>SeTa reduces training costs by up to 50% while maintaining or improving performance, with minimal degradation even at 70% cost reduction.
- Score: 27.28640920242675
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rapid growth of dataset scales has been a key driver in advancing deep learning research. However, as dataset scale increases, the training process becomes increasingly inefficient due to the presence of low-value samples, including excessive redundant samples, overly challenging samples, and inefficient easy samples that contribute little to model improvement.To address this challenge, we propose Scale Efficient Training (SeTa) for large datasets, a dynamic sample pruning approach that losslessly reduces training time. To remove low-value samples, SeTa first performs random pruning to eliminate redundant samples, then clusters the remaining samples according to their learning difficulty measured by loss. Building upon this clustering, a sliding window strategy is employed to progressively remove both overly challenging and inefficient easy clusters following an easy-to-hard curriculum.We conduct extensive experiments on large-scale synthetic datasets, including ToCa, SS1M, and ST+MJ, each containing over 3 million samples.SeTa reduces training costs by up to 50\% while maintaining or improving performance, with minimal degradation even at 70\% cost reduction. Furthermore, experiments on various scale real datasets across various backbones (CNNs, Transformers, and Mambas) and diverse tasks (instruction tuning, multi-view stereo, geo-localization, composed image retrieval, referring image segmentation) demonstrate the powerful effectiveness and universality of our approach. Code is available at https://github.com/mrazhou/SeTa.
Related papers
- FastMCTS: A Simple Sampling Strategy for Data Synthesis [67.60823802317141]
We introduce FastMCTS, an innovative data synthesis strategy inspired by Monte Carlo Tree Search.<n>FastMCTS provides a more efficient sampling method for multi-step reasoning data, offering step-level evaluation signals.<n>Experiments on both English and Chinese reasoning datasets demonstrate that FastMCTS generates over 30% more correct reasoning paths.
arXiv Detail & Related papers (2025-02-17T06:27:57Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - Detection of Under-represented Samples Using Dynamic Batch Training for Brain Tumor Segmentation from MR Images [0.8437187555622164]
Brain tumors in magnetic resonance imaging (MR) are difficult, time-consuming, and prone to human error.
These challenges can be resolved by developing automatic brain tumor segmentation methods from MR images.
Various deep-learning models based on the U-Net have been proposed for the task.
These deep-learning models are trained on a dataset of tumor images and then used for segmenting the masks.
arXiv Detail & Related papers (2024-08-21T21:51:47Z) - Exploring Learning Complexity for Efficient Downstream Dataset Pruning [8.990878450631596]
Existing dataset pruning methods require training on the entire dataset.
We propose a straightforward, novel, and training-free hardness score named Distorting-based Learning Complexity (DLC)
Our method is motivated by the observation that easy samples learned faster can also be learned with fewer parameters.
arXiv Detail & Related papers (2024-02-08T02:29:33Z) - Data Pruning via Moving-one-Sample-out [61.45441981346064]
We propose a novel data-pruning approach called moving-one-sample-out (MoSo)
MoSo aims to identify and remove the least informative samples from the training set.
Experimental results demonstrate that MoSo effectively mitigates severe performance degradation at high pruning ratios.
arXiv Detail & Related papers (2023-10-23T08:00:03Z) - KAKURENBO: Adaptively Hiding Samples in Deep Neural Network Training [2.8804804517897935]
We propose a method for hiding the least-important samples during the training of deep neural networks.
We adaptively find samples to exclude in a given epoch based on their contribution to the overall learning process.
Our method can reduce total training time by up to 22% impacting accuracy only by 0.4% compared to the baseline.
arXiv Detail & Related papers (2023-10-16T06:19:29Z) - Repeated Random Sampling for Minimizing the Time-to-Accuracy of Learning [28.042568086423298]
Repeated Sampling of Random Subsets (RS2) is a powerful yet overlooked random sampling strategy.
We test RS2 against thirty state-of-the-art data pruning and data distillation methods across four datasets including ImageNet.
Our results demonstrate that RS2 significantly reduces time-to-accuracy compared to existing techniques.
arXiv Detail & Related papers (2023-05-28T20:38:13Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
We present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss.
Our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks.
arXiv Detail & Related papers (2022-12-20T19:29:37Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
Generative Adversarial Networks (GANs) typically suffer from overfitting when limited training data is available.
We present ScoreMix, a novel and scalable data augmentation approach for various image synthesis tasks.
arXiv Detail & Related papers (2022-10-27T02:55:15Z) - Learning to Count in the Crowd from Limited Labeled Data [109.2954525909007]
We focus on reducing the annotation efforts by learning to count in the crowd from limited number of labeled samples.
Specifically, we propose a Gaussian Process-based iterative learning mechanism that involves estimation of pseudo-ground truth for the unlabeled data.
arXiv Detail & Related papers (2020-07-07T04:17:01Z) - Efficient Deep Representation Learning by Adaptive Latent Space Sampling [16.320898678521843]
Supervised deep learning requires a large amount of training samples with annotations, which are expensive and time-consuming to obtain.
We propose a novel training framework which adaptively selects informative samples that are fed to the training process.
arXiv Detail & Related papers (2020-03-19T22:17:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.