FastMCTS: A Simple Sampling Strategy for Data Synthesis
- URL: http://arxiv.org/abs/2502.11476v1
- Date: Mon, 17 Feb 2025 06:27:57 GMT
- Title: FastMCTS: A Simple Sampling Strategy for Data Synthesis
- Authors: Peiji Li, Kai Lv, Yunfan Shao, Yichuan Ma, Linyang Li, Xiaoqing Zheng, Xipeng Qiu, Qipeng Guo,
- Abstract summary: We introduce FastMCTS, an innovative data synthesis strategy inspired by Monte Carlo Tree Search.
FastMCTS provides a more efficient sampling method for multi-step reasoning data, offering step-level evaluation signals.
Experiments on both English and Chinese reasoning datasets demonstrate that FastMCTS generates over 30% more correct reasoning paths.
- Score: 67.60823802317141
- License:
- Abstract: Synthetic high-quality multi-step reasoning data can significantly enhance the performance of large language models on various tasks. However, most existing methods rely on rejection sampling, which generates trajectories independently and suffers from inefficiency and imbalanced sampling across problems of varying difficulty. In this work, we introduce FastMCTS, an innovative data synthesis strategy inspired by Monte Carlo Tree Search. FastMCTS provides a more efficient sampling method for multi-step reasoning data, offering step-level evaluation signals and promoting balanced sampling across problems of different difficulty levels. Experiments on both English and Chinese reasoning datasets demonstrate that FastMCTS generates over 30\% more correct reasoning paths compared to rejection sampling as the number of generated tokens scales up. Furthermore, under comparable synthetic data budgets, models trained on FastMCTS-generated data outperform those trained on rejection sampling data by 3.9\% across multiple benchmarks. As a lightweight sampling strategy, FastMCTS offers a practical and efficient alternative for synthesizing high-quality reasoning data. Our code will be released soon.
Related papers
- A Training-free Synthetic Data Selection Method for Semantic Segmentation [14.96784749682609]
Training semantic segmenter with synthetic data has been attracting great attention due to its easy accessibility and huge quantities.
Most previous methods focused on producing large-scale synthetic image-annotation samples and then training the segmenter with all of them.
We propose a training-free Synthetic Data Selection (SDS) strategy with CLIP to select high-quality samples for building a reliable synthetic dataset.
arXiv Detail & Related papers (2025-01-25T12:53:14Z) - Multi-Agent Sampling: Scaling Inference Compute for Data Synthesis with Tree Search-Based Agentic Collaboration [81.45763823762682]
This work aims to bridge the gap by investigating the problem of data synthesis through multi-agent sampling.
We introduce Tree Search-based Orchestrated Agents(TOA), where the workflow evolves iteratively during the sequential sampling process.
Our experiments on alignment, machine translation, and mathematical reasoning demonstrate that multi-agent sampling significantly outperforms single-agent sampling as inference compute scales.
arXiv Detail & Related papers (2024-12-22T15:16:44Z) - CorrSynth -- A Correlated Sampling Method for Diverse Dataset Generation from LLMs [5.89889361990138]
Large language models (LLMs) have demonstrated remarkable performance in diverse tasks using zero-shot and few-shot prompting.
In this work, we tackle the challenge of generating datasets with high diversity, upon which a student model is trained for downstream tasks.
Taking the route of decoding-time guidance-based approaches, we propose Corr Synth, which generates data that is more diverse and faithful to the input prompt using a correlated sampling strategy.
arXiv Detail & Related papers (2024-11-13T12:09:23Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Align Your Steps: Optimizing Sampling Schedules in Diffusion Models [63.927438959502226]
Diffusion models (DMs) have established themselves as the state-of-the-art generative modeling approach in the visual domain and beyond.
A crucial drawback of DMs is their slow sampling speed, relying on many sequential function evaluations through large neural networks.
We propose a general and principled approach to optimizing the sampling schedules of DMs for high-quality outputs.
arXiv Detail & Related papers (2024-04-22T18:18:41Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
We present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss.
Our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks.
arXiv Detail & Related papers (2022-12-20T19:29:37Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
Imbalanced learning is a fundamental challenge in data mining, where there is a disproportionate ratio of training samples in each class.
Over-sampling is an effective technique to tackle imbalanced learning through generating synthetic samples for the minority class.
We propose AutoSMOTE, an automated over-sampling algorithm that can jointly optimize different levels of decisions.
arXiv Detail & Related papers (2022-08-26T04:28:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.