U2AD: Uncertainty-based Unsupervised Anomaly Detection Framework for Detecting T2 Hyperintensity in MRI Spinal Cord
- URL: http://arxiv.org/abs/2503.13400v1
- Date: Mon, 17 Mar 2025 17:33:32 GMT
- Title: U2AD: Uncertainty-based Unsupervised Anomaly Detection Framework for Detecting T2 Hyperintensity in MRI Spinal Cord
- Authors: Qi Zhang, Xiuyuan Chen, Ziyi He, Kun Wang, Lianming Wu, Hongxing Shen, Jianqi Sun,
- Abstract summary: T2 hyperintensities in spinal cord MR images are crucial biomarkers for conditions such as degenerative cervical myelopathy.<n>Deep learning methods have shown promise in lesion detection, but most supervised approaches are heavily dependent on large, annotated datasets.<n>We propose an Uncertainty-based Unsupervised Anomaly Detection framework, termed U2AD, to address these limitations.
- Score: 7.811634659561162
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: T2 hyperintensities in spinal cord MR images are crucial biomarkers for conditions such as degenerative cervical myelopathy. However, current clinical diagnoses primarily rely on manual evaluation. Deep learning methods have shown promise in lesion detection, but most supervised approaches are heavily dependent on large, annotated datasets. Unsupervised anomaly detection (UAD) offers a compelling alternative by eliminating the need for abnormal data annotations. However, existing UAD methods rely on curated normal datasets and their performance frequently deteriorates when applied to clinical datasets due to domain shifts. We propose an Uncertainty-based Unsupervised Anomaly Detection framework, termed U2AD, to address these limitations. Unlike traditional methods, U2AD is designed to be trained and tested within the same clinical dataset, following a "mask-and-reconstruction" paradigm built on a Vision Transformer-based architecture. We introduce an uncertainty-guided masking strategy to resolve task conflicts between normal reconstruction and anomaly detection to achieve an optimal balance. Specifically, we employ a Monte-Carlo sampling technique to estimate reconstruction uncertainty mappings during training. By iteratively optimizing reconstruction training under the guidance of both epistemic and aleatoric uncertainty, U2AD reduces overall reconstruction variance while emphasizing regions. Experimental results demonstrate that U2AD outperforms existing supervised and unsupervised methods in patient-level identification and segment-level localization tasks. This framework establishes a new benchmark for incorporating uncertainty guidance into UAD, highlighting its clinical utility in addressing domain shifts and task conflicts in medical image anomaly detection. Our code is available: https://github.com/zhibaishouheilab/U2AD
Related papers
- Crane: Context-Guided Prompt Learning and Attention Refinement for Zero-Shot Anomaly Detections [50.343419243749054]
Anomaly Detection (AD) involves identifying deviations from normal data distributions.
We propose a novel approach that conditions the prompts of the text encoder based on image context extracted from the vision encoder.
Our method achieves state-of-the-art performance, improving performance by 2% to 29% across different metrics on 14 datasets.
arXiv Detail & Related papers (2025-04-15T10:42:25Z) - Revisiting Deep Ensemble Uncertainty for Enhanced Medical Anomaly Detection [34.14012444375776]
We propose a Dual-space Uncertainty Estimation framework for medical anomaly detection.
To balance agreement and disagreement for anomaly detection, we propose Redundancy-Aware Repulsion (RAR)
We also develop Dual-Space Uncertainty (DSU) which utilizes the ensemble's uncertainty in input and output spaces.
arXiv Detail & Related papers (2024-09-26T02:47:41Z) - Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark [101.23684938489413]
Anomaly detection (AD) is often focused on detecting anomalies for industrial quality inspection and medical lesion examination.
This work first constructs a large-scale and general-purpose COCO-AD dataset by extending COCO to the AD field.
Inspired by the metrics in the segmentation field, we propose several more practical threshold-dependent AD-specific metrics.
arXiv Detail & Related papers (2024-04-16T17:38:26Z) - Guided Reconstruction with Conditioned Diffusion Models for Unsupervised Anomaly Detection in Brain MRIs [35.46541584018842]
Unsupervised Anomaly Detection (UAD) aims to identify any anomaly as an outlier from a healthy training distribution.<n>generative models are used to learn the reconstruction of healthy brain anatomy for a given input image.<n>We propose conditioning the denoising process of diffusion models with additional information derived from a latent representation of the input image.
arXiv Detail & Related papers (2023-12-07T11:03:42Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Unsupervised Domain Adaptation for Low-dose CT Reconstruction via Bayesian Uncertainty Alignment [32.632944734192435]
Low-dose computed tomography (LDCT) image reconstruction techniques can reduce patient radiation exposure while maintaining acceptable imaging quality.
Deep learning is widely used in this problem, but the performance of testing data is often degraded in clinical scenarios.
Unsupervised domain adaptation (UDA) of LDCT reconstruction has been proposed to solve this problem through distribution alignment.
arXiv Detail & Related papers (2023-02-26T07:10:09Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Diminishing Empirical Risk Minimization for Unsupervised Anomaly
Detection [0.0]
Empirical Risk Minimization (ERM) assumes that the performance of an algorithm on an unknown distribution can be approximated by averaging losses on the known training set.
We propose a novel Diminishing Empirical Risk Minimization (DERM) framework to break through the limitations of ERM.
DERM adaptively adjusts the impact of individual losses through a well-devised aggregation strategy.
arXiv Detail & Related papers (2022-05-29T14:18:26Z) - Memory-augmented Adversarial Autoencoders for Multivariate Time-series
Anomaly Detection with Deep Reconstruction and Prediction [4.033624665609417]
We propose MemAAE, a novel unsupervised anomaly detection method for time-series.
By jointly training two complementary proxy tasks, reconstruction and prediction, we show that detecting anomalies via multiple tasks obtains superior performance.
MemAAE achieves an overall F1 score of 0.90 on four public datasets, significantly outperforming the best baseline by 0.02.
arXiv Detail & Related papers (2021-10-15T18:29:05Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.