論文の概要: Using the Tools of Cognitive Science to Understand Large Language Models at Different Levels of Analysis
- arxiv url: http://arxiv.org/abs/2503.13401v1
- Date: Mon, 17 Mar 2025 17:33:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:35:59.468906
- Title: Using the Tools of Cognitive Science to Understand Large Language Models at Different Levels of Analysis
- Title(参考訳): 認知科学のツールを用いて分析の異なる大規模言語モデルを理解する
- Authors: Alexander Ku, Declan Campbell, Xuechunzi Bai, Jiayi Geng, Ryan Liu, Raja Marjieh, R. Thomas McCoy, Andrew Nam, Ilia Sucholutsky, Veniamin Veselovsky, Liyi Zhang, Jian-Qiao Zhu, Thomas L. Griffiths,
- Abstract要約: 認知科学で開発された手法は、大きな言語モデルを理解するのに役立つと論じる。
本稿では,これらの手法をMarrの3つの解析レベルに基づいて適用するためのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 46.08309259203833
- License:
- Abstract: Modern artificial intelligence systems, such as large language models, are increasingly powerful but also increasingly hard to understand. Recognizing this problem as analogous to the historical difficulties in understanding the human mind, we argue that methods developed in cognitive science can be useful for understanding large language models. We propose a framework for applying these methods based on Marr's three levels of analysis. By revisiting established cognitive science techniques relevant to each level and illustrating their potential to yield insights into the behavior and internal organization of large language models, we aim to provide a toolkit for making sense of these new kinds of minds.
- Abstract(参考訳): 大規模言語モデルのような現代の人工知能システムは、ますます強力になるが、理解しにくいものも増えている。
この問題は、人間の心を理解する上での歴史的困難と類似しているとして、認知科学で開発された手法は、大きな言語モデルを理解するのに有用である、と論じる。
本稿では,これらの手法をMarrの3つの解析レベルに基づいて適用するためのフレームワークを提案する。
それぞれのレベルに関連する認知科学技術を再考し、大きな言語モデルの振る舞いや内部構造に関する洞察を得る可能性を示すことによって、これらの新しい種類の心を理解するためのツールキットの提供を目指している。
関連論文リスト
- The Philosophical Foundations of Growing AI Like A Child [0.0]
本稿では,人間と機械の認知発達の相違から生じる課題について論じる。
人間の中核知識の実証的な証拠を探究し、言語モデルがそれを取得できない理由を分析し、この制限は固有のアーキテクチャ上の制約ではないと主張する。
論文 参考訳(メタデータ) (2025-02-15T09:47:20Z) - Language Evolution with Deep Learning [49.879239655532324]
計算モデリングは言語の出現の研究において重要な役割を担っている。
構造化言語の出現を誘発する可能性のある条件と学習プロセスをシミュレートすることを目的としている。
この章では、最近機械学習の分野に革命をもたらした別の種類の計算モデル、ディープ・ラーニング・モデルについて論じる。
論文 参考訳(メタデータ) (2024-03-18T16:52:54Z) - Improving deep learning with prior knowledge and cognitive models: A
survey on enhancing explainability, adversarial robustness and zero-shot
learning [0.0]
我々は、敵の防御を実現するために、現在および新興の知識インフォームドおよび脳にインスパイアされた認知システムについてレビューする。
脳に触発された認知法は、人間の心を模倣する計算モデルを用いて、人工知能や自律ロボットの知的な行動を強化する。
論文 参考訳(メタデータ) (2024-03-11T18:11:00Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - Exploiting Language Models as a Source of Knowledge for Cognitive Agents [4.557963624437782]
大規模言語モデル(LLM)は、質問応答、要約、自然言語推論など、文の完成度をはるかに超える機能を提供する。
これらの能力の多くは認知システムに潜在的に適用できるが、我々の研究は認知エージェントのタスク知識の源として言語モデルを利用しており、認知アーキテクチャを通じて実現されたエージェントである。
論文 参考訳(メタデータ) (2023-09-05T15:18:04Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z) - Language Cognition and Language Computation -- Human and Machine
Language Understanding [51.56546543716759]
言語理解は認知科学とコンピュータ科学の分野で重要な科学的問題である。
これらの規律を組み合わせることで、インテリジェントな言語モデルを構築する上で、新たな洞察が得られますか?
論文 参考訳(メタデータ) (2023-01-12T02:37:00Z) - The Debate Over Understanding in AI's Large Language Models [0.18275108630751835]
我々は、AI研究コミュニティにおける、大規模な事前訓練された言語モデルが"理解"言語と言えるかどうかについて、現在、熱い議論を調査している。
我々は、異なる理解様式に関する洞察を提供する新しい知性科学を開発することができると論じる。
論文 参考訳(メタデータ) (2022-10-14T17:04:29Z) - Language Models as a Knowledge Source for Cognitive Agents [9.061356032792954]
言語モデル (LM) は大量のコーパスで訓練された文補完エンジンである。
本稿では,認知システムのための新たな知識源として言語モデルを用いる上での課題と機会について概説する。
また、認知システムが提供する能力を用いて、言語モデルからの知識抽出を改善する方法も特定する。
論文 参考訳(メタデータ) (2021-09-17T01:12:34Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。