論文の概要: xLSTM 7B: A Recurrent LLM for Fast and Efficient Inference
- arxiv url: http://arxiv.org/abs/2503.13427v1
- Date: Mon, 17 Mar 2025 17:54:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:34:14.447658
- Title: xLSTM 7B: A Recurrent LLM for Fast and Efficient Inference
- Title(参考訳): xLSTM 7B:高速かつ効率的な推論のためのリカレントLLM
- Authors: Maximilian Beck, Korbinian Pöppel, Phillip Lippe, Richard Kurle, Patrick M. Blies, Günter Klambauer, Sebastian Böck, Sepp Hochreiter,
- Abstract要約: 推論速度は、Large Language Models(LLM)の最も重要な特性の1つである。
我々は、xLSTMのアーキテクチャ上の利点と、高速で効率的な推論のためのターゲット最適化を組み合わせた7ビリオンパラメータLLMであるxLSTM 7Bを紹介する。
本研究は,xLSTM 7Bを高速かつ高効率な7B LLMとして確立し,大量のテスト時間計算を必要とするタスクに対するソリューションを提供する。
- 参考スコア(独自算出の注目度): 17.2581669876316
- License:
- Abstract: Recent breakthroughs in solving reasoning, math and coding problems with Large Language Models (LLMs) have been enabled by investing substantial computation budgets at inference time. Therefore, inference speed is one of the most critical properties of LLM architectures, and there is a growing need for LLMs that are efficient and fast at inference. Recently, LLMs built on the xLSTM architecture have emerged as a powerful alternative to Transformers, offering linear compute scaling with sequence length and constant memory usage, both highly desirable properties for efficient inference. However, such xLSTM-based LLMs have yet to be scaled to larger models and assessed and compared with respect to inference speed and efficiency. In this work, we introduce xLSTM 7B, a 7-billion-parameter LLM that combines xLSTM's architectural benefits with targeted optimizations for fast and efficient inference. Our experiments demonstrate that xLSTM 7B achieves performance on downstream tasks comparable to other similar-sized LLMs, while providing significantly faster inference speeds and greater efficiency compared to Llama- and Mamba-based LLMs. These results establish xLSTM 7B as the fastest and most efficient 7B LLM, offering a solution for tasks that require large amounts of test-time computation. Our work highlights xLSTM's potential as a foundational architecture for methods building on heavy use of LLM inference. Our model weights, model code and training code are open-source.
- Abstract(参考訳): 近年,Large Language Models (LLMs) による推論,数学,コーディングの問題を解く上でのブレークスルーは,推論時にかなりの計算予算を投資することで実現されている。
したがって、推論速度はLLMアーキテクチャの最も重要な特性の1つであり、推論において効率的かつ高速なLLMの必要性が高まっている。
近年、xLSTMアーキテクチャ上に構築されたLLMはトランスフォーマーの強力な代替品として登場し、シーケンス長とメモリ使用量による線形計算スケーリングを提供し、どちらも効率的な推論のために非常に望ましい特性を提供している。
しかしながら、これらのxLSTMベースのLLMは、まだより大きなモデルにスケールされておらず、推論速度と効率に関して評価され、比較されている。
本研究では,xLSTMのアーキテクチャ上の利点と,高速かつ効率的な推論のための最適化を組み合わせた7ビリオンパラメータLLMであるxLSTM 7Bを紹介する。
実験により,xLSTM 7Bは,Llama や Mamba をベースとした LLM と比較して,より高速な推論速度と効率を実現するとともに,他のLLM に匹敵するダウンストリームタスクにおける性能を実現することを示した。
これらの結果は、xLSTM 7Bを最も高速かつ効率的な7B LLMとして確立し、大量のテスト時間計算を必要とするタスクに対するソリューションを提供する。
我々の研究は、LLM推論を多用したメソッドの基盤アーキテクチャとしてのxLSTMの可能性を強調した。
モデルの重み、モデルコード、トレーニングコードはオープンソースです。
関連論文リスト
- Search for Efficient Large Language Models [52.98684997131108]
大規模言語モデル(LLMs)は、人工知能研究の領域で長い間停滞してきた。
軽量プルーニング、量子化、蒸留がLLMの圧縮に取り入れられ、メモリの削減と推論の加速を狙った。
ほとんどのモデル圧縮技術は、最適アーキテクチャの探索を見越して重量最適化に重点を置いている。
論文 参考訳(メタデータ) (2024-09-25T21:32:12Z) - SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models [8.558834738072363]
大規模言語モデル(LLM)は、様々なアプリケーションにまたがる顕著な性能のために広く採用されている。
これらの個々のLCMは、固有のトレーニングバイアス、モデルサイズ制約、トレーニング前のデータセットの品質や多様性による、複雑なタスクの一般化とパフォーマンスの制限を示す。
本稿では,入力クエリをLLMの最も適切なサブセットに効率的に誘導するSelectLLMを紹介する。
論文 参考訳(メタデータ) (2024-08-16T06:11:21Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示しており、最近、IoT(Internet of Things)アプリケーションにLLMの能力を統合することが研究の注目を集めている。
セキュリティ上の懸念から、多くの機関は最先端の商用LLMサービスへのアクセスを避け、ローカルネットワーク環境でのオープンソースLLMのデプロイと利用を必要としている。
本研究では,LLMを用いた生成IoT(Generative IoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - SLEB: Streamlining LLMs through Redundancy Verification and Elimination of Transformer Blocks [9.958467179573237]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて非常に効果的であることが証明されている。
既存の手法はしばしば、実質的なエンドツーエンドのLLM推論スピードアップを達成するのに苦労する。
SLEBは、冗長なトランスフォーマーブロックを排除し、LCMを合理化するための新しいアプローチである。
論文 参考訳(メタデータ) (2024-02-14T09:01:13Z) - An Embarrassingly Simple Approach for LLM with Strong ASR Capacity [56.30595787061546]
我々は,音声基礎エンコーダと大規模言語モデル(LLM)を用いて,音声処理の分野で最も重要な課題の1つを解決することに注力する。
最近の研究は、音声エンコーダの出力を時間的に圧縮したり、プロジェクタのモーダルアライメントに対処したり、LLMのパラメータ効率の良い微調整を利用するといった複雑な設計をしている。
そこで本研究では,市販の音声エンコーダLLMと,トレーニング可能な唯一の線形プロジェクタの単純な構成がASRタスクに適しているのに対して,繊細な設計は必要ないことを発見した。
論文 参考訳(メタデータ) (2024-02-13T23:25:04Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLMは、事前訓練された大規模言語モデルに適した1ビット後のトレーニング後の量子化スキームである。
LLaMA2-70Bの8.41パープレキシティは、様々なLLMファミリーで1.08ビットの重みしか持たない。
論文 参考訳(メタデータ) (2024-02-06T09:26:34Z) - Looking Right is Sometimes Right: Investigating the Capabilities of Decoder-only LLMs for Sequence Labeling [0.0]
最近のデコーダのみの大規模言語モデル(LLM)は、より小さなステートベースのエンコーダと同等に動作する。
因果マスクを階層的に除去することで,IEタスク上でのオープンLLMのSL性能を向上させる手法について検討する。
その結果,層依存性CM除去によるオープンLCMは,強いエンコーダや命令調整LDMよりも優れていた。
論文 参考訳(メタデータ) (2024-01-25T22:50:48Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
大規模言語モデル(LLM)はAIの分野に革命をもたらし、様々なタスクで前例のない能力を示している。
本稿では,LLMのパワーを利用する効率的なLLM推論パイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:36:06Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。