論文の概要: Verbosity Tradeoffs and the Impact of Scale on the Faithfulness of LLM Self-Explanations
- arxiv url: http://arxiv.org/abs/2503.13445v2
- Date: Thu, 02 Oct 2025 19:51:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-06 14:21:29.715634
- Title: Verbosity Tradeoffs and the Impact of Scale on the Faithfulness of LLM Self-Explanations
- Title(参考訳): LLM自己説明の信条性に及ぼすバービシティトレードオフとスケールの影響
- Authors: Noah Y. Siegel, Nicolas Heess, Maria Perez-Ortiz, Oana-Maria Camburu,
- Abstract要約: 我々は13家族の75モデルにわたる反事実的忠実度を分析した。
この研究は、相関対実テスト(CCT)の簡易版であるphi-CCTとF-AUROCの2つの新しい指標を動機付けている。
より大きく、より有能なモデルは、私たちが考慮しているすべての指標に一貫して忠実です。
- 参考スコア(独自算出の注目度): 19.32573526975115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When asked to explain their decisions, LLMs can often give explanations which sound plausible to humans. But are these explanations faithful, i.e. do they convey the factors actually responsible for the decision? In this work, we analyse counterfactual faithfulness across 75 models from 13 families. We analyze the tradeoff between conciseness and comprehensiveness, how correlational faithfulness metrics assess this tradeoff, and the extent to which metrics can be gamed. This analysis motivates two new metrics: the phi-CCT, a simplified variant of the Correlational Counterfactual Test (CCT) which avoids the need for token probabilities while explaining most of the variance of the original test; and F-AUROC, which eliminates sensitivity to imbalanced intervention distributions and captures a model's ability to produce explanations with different levels of detail. Our findings reveal a clear scaling trend: larger and more capable models are consistently more faithful on all metrics we consider. Our code is available at https://github.com/google-deepmind/corr_faith.
- Abstract(参考訳): 意思決定の説明を求めると、LLMは人間にとって妥当な説明をすることが多い。
しかし、これらの説明は忠実なのか、すなわち、決定に実際に責任を持つ要因を伝えるのか?
本研究では,13家族の75モデルにわたる反事実的忠実度を分析した。
我々は、簡潔さと包括性の間のトレードオフ、相関的忠実度メトリクスがこのトレードオフを評価する方法、そしてメトリクスをゲームできる範囲を分析します。
この分析は2つの新しい指標を動機付けている: phi-CCT、これは相関対実テスト(CCT)の単純化された変種であり、オリジナルのテストのばらつきの大半を説明しながらトークンの確率を回避し、F-AUROCは不均衡な介入分布に対する感受性を排除し、異なるレベルの詳細で説明を作成するモデルの能力を取得する。
より大きく、より有能なモデルは、私たちが考慮しているすべての指標に一貫して忠実です。
私たちのコードはhttps://github.com/google-deepmind/corr_faith.comで公開されています。
関連論文リスト
- Rationales Are Not Silver Bullets: Measuring the Impact of Rationales on Model Performance and Reliability [70.4107059502882]
有理数拡張による学習言語モデルは、多くの既存の作品において有益であることが示されている。
モデル性能に対する合理的性の影響を徹底的に調査するため、包括的調査を行う。
論文 参考訳(メタデータ) (2025-05-30T02:39:37Z) - A Closer Look at Bias and Chain-of-Thought Faithfulness of Large (Vision) Language Models [53.18562650350898]
思考の連鎖(CoT)推論は、大きな言語モデルの性能を高める。
大規模視覚言語モデルにおけるCoT忠実度に関する最初の総合的研究について述べる。
論文 参考訳(メタデータ) (2025-05-29T18:55:05Z) - Towards Faithful Natural Language Explanations: A Study Using Activation Patching in Large Language Models [29.67884478799914]
大きな言語モデル(LLM)は、その答えを正当化するために説得力のある自然言語説明(NLE)を生成することができる。
近年,NLEの忠実度を測定するための様々な手法が提案されている。
これらのアプローチは、確立された忠実性の定義に従って包括的でも正しくも設計されていない、と我々は主張する。
論文 参考訳(メタデータ) (2024-10-18T03:45:42Z) - Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
本稿では、より説明可能なアクティベーションヒートマップを取得し、同時にモデル性能を向上させるフレームワークを提案する。
具体的には、モデル学習において、トレーニングサンプルを適応的に重み付けするために、新しいメトリクス、すなわち説明整合性を導入する。
そこで,本フレームワークは,これらのトレーニングサンプルに深い注意を払ってモデル学習を促進する。
論文 参考訳(メタデータ) (2024-08-08T17:20:08Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - The Probabilities Also Matter: A More Faithful Metric for Faithfulness of Free-Text Explanations in Large Language Models [24.144513068228903]
本稿では,インプット介入に基づく信頼度テストに使用できる指標である相関説明忠実度(CEF)について紹介する。
我々の測定基準は、モデルが予測するラベル分布の総シフトを考慮に入れている。
次に, 相関対実テスト(CCT)を導入し, 相関対実テスト(CEF)をインスタンス化する。
論文 参考訳(メタデータ) (2024-04-04T04:20:04Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
ディープラーニングにおけるミススキャリブレーションとは、予測された信頼とパフォーマンスの間には相違がある、という意味である。
トレーニング中に何を学ぶべきかを学ぶことを目的とした動的正規化(DReg)を導入し、信頼度調整のトレードオフを回避する。
論文 参考訳(メタデータ) (2024-02-13T11:25:20Z) - Distinguishing the Knowable from the Unknowable with Language Models [15.471748481627143]
地中真理確率の欠如において、与えられた不確実性を解き放つために、より大きなモデルが地中真理の代用として現れるような設定を探索する。
凍結, 事前訓練されたモデルの埋め込みを訓練した小さな線形プローブが, トークンレベルでより大きなモデルがより自信を持つようになる時期を正確に予測することを示した。
我々は,同じタスクにおいて非自明な精度を実現する,完全に教師なしの手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T22:22:49Z) - Pre-training and Diagnosing Knowledge Base Completion Models [58.07183284468881]
我々は,事実の集合から他の集合への知識伝達へのアプローチを,エンティティや関係マッチングを必要とせずに導入し,分析する。
主な貢献は、構造化されていないテキストから収集された事実の大規模事前学習を利用する方法である。
得られた事前学習モデルをよりよく理解するために,オープン知識ベースコンプリートのための事前学習モデルの解析のための新しいデータセットを導入する。
論文 参考訳(メタデータ) (2024-01-27T15:20:43Z) - Question Decomposition Improves the Faithfulness of Model-Generated
Reasoning [23.34325378824462]
大規模言語モデル(LLM)は、その振る舞いの正しさと安全性を検証するのが困難である。
一つのアプローチは、LLMが質問に答えるときにステップバイステップの推論を生成することによって、彼らの推論を外部化するように促すことである。
このアプローチは、モデルの実的推論を忠実に反映する記述された推論に依存しており、必ずしもそうではない。
分解に基づく手法は、時にはCoTの手法に近づき、質問応答タスクにおいて高い性能を達成する。
論文 参考訳(メタデータ) (2023-07-17T00:54:10Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
本稿では, 忠実度スルー・カウンタファクトの方法論について紹介する。
これは、説明に表される論理述語に基づいて、反実仮説を生成する。
そして、そのモデルが表現された論理と反ファクトの予測が一致しているかどうかを評価する。
論文 参考訳(メタデータ) (2022-05-25T03:40:59Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - PROMPT WAYWARDNESS: The Curious Case of Discretized Interpretation of
Continuous Prompts [99.03864962014431]
目標タスクの微調整連続プロンプトは、フルモデルの微調整に代わるコンパクトな代替品として登場した。
実際には、連続的なプロンプトによって解決されたタスクと、最も近い隣人との間の「方向」の挙動を観察する。
論文 参考訳(メタデータ) (2021-12-15T18:55:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。