MetaScale: Test-Time Scaling with Evolving Meta-Thoughts
- URL: http://arxiv.org/abs/2503.13447v1
- Date: Mon, 17 Mar 2025 17:59:54 GMT
- Title: MetaScale: Test-Time Scaling with Evolving Meta-Thoughts
- Authors: Qin Liu, Wenxuan Zhou, Nan Xu, James Y. Huang, Fei Wang, Sheng Zhang, Hoifung Poon, Muhao Chen,
- Abstract summary: Experimental results demonstrate that MetaScale consistently outperforms standard inference approaches.<n> METASCALE scales more effectively with increasing sampling budgets and produces more structured, expert-level responses.
- Score: 51.35594569020857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One critical challenge for large language models (LLMs) for making complex reasoning is their reliance on matching reasoning patterns from training data, instead of proactively selecting the most appropriate cognitive strategy to solve a given task. Existing approaches impose fixed cognitive structures that enhance performance in specific tasks but lack adaptability across diverse scenarios. To address this limitation, we introduce METASCALE, a test-time scaling framework based on meta-thoughts -- adaptive thinking strategies tailored to each task. METASCALE initializes a pool of candidate meta-thoughts, then iteratively selects and evaluates them using a multi-armed bandit algorithm with upper confidence bound selection, guided by a reward model. To further enhance adaptability, a genetic algorithm evolves high-reward meta-thoughts, refining and extending the strategy pool over time. By dynamically proposing and optimizing meta-thoughts at inference time, METASCALE improves both accuracy and generalization across a wide range of tasks. Experimental results demonstrate that MetaScale consistently outperforms standard inference approaches, achieving an 11% performance gain in win rate on Arena-Hard for GPT-4o, surpassing o1-mini by 0.9% under style control. Notably, METASCALE scales more effectively with increasing sampling budgets and produces more structured, expert-level responses.
Related papers
- Clustering-based Meta Bayesian Optimization with Theoretical Guarantee [9.821653903127107]
We propose a scalable and robust meta-BO method designed to address key challenges in heterogeneous and large-scale meta-tasks.
Our approach effectively partitions transferred meta-functions into highly homogeneous clusters, learns the geometry-based surrogate prototype, and adaptively synthesizes meta-priors during the online phase.
arXiv Detail & Related papers (2025-03-08T06:46:28Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - RLEMMO: Evolutionary Multimodal Optimization Assisted By Deep Reinforcement Learning [8.389454219309837]
multimodal optimization problems (MMOP) requires finding all optimal solutions, which is challenging in limited function evaluations.
We propose RLEMMO, a Meta-Black-Box Optimization framework, which maintains a population of solutions and incorporates a reinforcement learning agent.
With a novel reward mechanism that encourages both quality and diversity, RLEMMO can be effectively trained using a policy gradient algorithm.
arXiv Detail & Related papers (2024-04-12T05:02:49Z) - Evolving Pareto-Optimal Actor-Critic Algorithms for Generalizability and
Stability [67.8426046908398]
Generalizability and stability are two key objectives for operating reinforcement learning (RL) agents in the real world.
This paper presents MetaPG, an evolutionary method for automated design of actor-critic loss functions.
arXiv Detail & Related papers (2022-04-08T20:46:16Z) - Meta-learning with an Adaptive Task Scheduler [93.63502984214918]
Existing meta-learning algorithms randomly sample meta-training tasks with a uniform probability.
It is likely that tasks are detrimental with noise or imbalanced given a limited number of meta-training tasks.
We propose an adaptive task scheduler (ATS) for the meta-training process.
arXiv Detail & Related papers (2021-10-26T22:16:35Z) - Meta Learning Black-Box Population-Based Optimizers [0.0]
We propose the use of meta-learning to infer population-based blackbox generalizations.
We show that the meta-loss function encourages a learned algorithm to alter its search behavior so that it can easily fit into a new context.
arXiv Detail & Related papers (2021-03-05T08:13:25Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
We propose the first meta-learning paradigm in the Reproducing Kernel Hilbert Space (RKHS) induced by the meta-model's Neural Tangent Kernel (NTK)
Within this paradigm, we introduce two meta-learning algorithms, which no longer need a sub-optimal iterative inner-loop adaptation as in the MAML framework.
We achieve this goal by 1) replacing the adaptation with a fast-adaptive regularizer in the RKHS; and 2) solving the adaptation analytically based on the NTK theory.
arXiv Detail & Related papers (2021-02-07T20:53:23Z) - Improving Generalization in Meta-learning via Task Augmentation [69.83677015207527]
We propose two task augmentation methods, including MetaMix and Channel Shuffle.
Both MetaMix and Channel Shuffle outperform state-of-the-art results by a large margin across many datasets.
arXiv Detail & Related papers (2020-07-26T01:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.