RLEMMO: Evolutionary Multimodal Optimization Assisted By Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2404.08242v1
- Date: Fri, 12 Apr 2024 05:02:49 GMT
- Title: RLEMMO: Evolutionary Multimodal Optimization Assisted By Deep Reinforcement Learning
- Authors: Hongqiao Lian, Zeyuan Ma, Hongshu Guo, Ting Huang, Yue-Jiao Gong,
- Abstract summary: multimodal optimization problems (MMOP) requires finding all optimal solutions, which is challenging in limited function evaluations.
We propose RLEMMO, a Meta-Black-Box Optimization framework, which maintains a population of solutions and incorporates a reinforcement learning agent.
With a novel reward mechanism that encourages both quality and diversity, RLEMMO can be effectively trained using a policy gradient algorithm.
- Score: 8.389454219309837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving multimodal optimization problems (MMOP) requires finding all optimal solutions, which is challenging in limited function evaluations. Although existing works strike the balance of exploration and exploitation through hand-crafted adaptive strategies, they require certain expert knowledge, hence inflexible to deal with MMOP with different properties. In this paper, we propose RLEMMO, a Meta-Black-Box Optimization framework, which maintains a population of solutions and incorporates a reinforcement learning agent for flexibly adjusting individual-level searching strategies to match the up-to-date optimization status, hence boosting the search performance on MMOP. Concretely, we encode landscape properties and evolution path information into each individual and then leverage attention networks to advance population information sharing. With a novel reward mechanism that encourages both quality and diversity, RLEMMO can be effectively trained using a policy gradient algorithm. The experimental results on the CEC2013 MMOP benchmark underscore the competitive optimization performance of RLEMMO against several strong baselines.
Related papers
- An LLM-Empowered Adaptive Evolutionary Algorithm For Multi-Component Deep Learning Systems [17.78934802009711]
Multi-objective evolutionary algorithms (MOEAs) are widely used for searching optimal solutions in complex multi-component applications.
This paper proposes $mu$MOEA, the first adaptive evolutionary search algorithm to detect safety violations in MCDL systems.
Experimental results show that $mu$MOEA can significantly improve the efficiency and diversity of the evolutionary search.
arXiv Detail & Related papers (2025-01-01T13:19:58Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.
deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.
This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - On-the-fly Modulation for Balanced Multimodal Learning [53.616094855778954]
Multimodal learning is expected to boost model performance by integrating information from different modalities.
The widely-used joint training strategy leads to imbalanced and under-optimized uni-modal representations.
We propose On-the-fly Prediction Modulation (OPM) and On-the-fly Gradient Modulation (OGM) strategies to modulate the optimization of each modality.
arXiv Detail & Related papers (2024-10-15T13:15:50Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.
Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.
We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - Learning to Rebalance Multi-Modal Optimization by Adaptively Masking Subnetworks [13.065212096469537]
We propose a novel importance sampling-based, element-wise joint optimization method, called Adaptively Mask Subnetworks Considering Modal Significance(AMSS)
Specifically, we incorporate mutual information rates to determine the modal significance and employ non-uniform adaptive sampling to select foregroundworks from each modality for parameter updates.
Building upon theoretical insights, we further enhance the multi-modal mask subnetwork strategy using unbiased estimation, referred to as AMSS+.
arXiv Detail & Related papers (2024-04-12T09:22:24Z) - Large Language Models as Evolutionary Optimizers [37.92671242584431]
We present the first study on large language models (LLMs) as evolutionarys.
The main advantage is that it requires minimal domain knowledge and human efforts, as well as no additional training of the model.
We also study the effectiveness of the self-adaptation mechanism in evolutionary search.
arXiv Detail & Related papers (2023-10-29T15:44:52Z) - Deep Reinforcement Learning for Exact Combinatorial Optimization:
Learning to Branch [13.024115985194932]
We propose a new approach for solving the data labeling and inference issues in optimization based on the use of the reinforcement learning (RL) paradigm.
We use imitation learning to bootstrap an RL agent and then use Proximal Policy (PPO) to further explore global optimal actions.
arXiv Detail & Related papers (2022-06-14T16:35:58Z) - Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise
Rollouts [52.844741540236285]
This paper investigates the model-based methods in multi-agent reinforcement learning (MARL)
We propose a novel decentralized model-based MARL method, named Adaptive Opponent-wise Rollout Policy (AORPO)
arXiv Detail & Related papers (2021-05-07T16:20:22Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.