論文の概要: Multimodal Lead-Specific Modeling of ECG for Low-Cost Pulmonary Hypertension Assessment
- arxiv url: http://arxiv.org/abs/2503.13470v1
- Date: Mon, 03 Mar 2025 16:16:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-23 07:08:04.274440
- Title: Multimodal Lead-Specific Modeling of ECG for Low-Cost Pulmonary Hypertension Assessment
- Title(参考訳): 低濃度肺高血圧症に対する心電図のマルチモーダルリードモデリング
- Authors: Mohammod N. I. Suvon, Shuo Zhou, Prasun C. Tripathi, Wenrui Fan, Samer Alabed, Bishesh Khanal, Venet Osmani, Andrew J. Swift, Chen, Chen, Haiping Lu,
- Abstract要約: 低所得国や中所得国(LMIC)では,高度な診断ツールが不足しているため,肺高血圧症(PH)が頻繁に診断される。
我々は,大人口12L-ECGデータに基づいて事前学習したモデルであるLS-EMVAE(Lead-Specific Electrocardiogram Multimodal Variational Autoencoder)を提案する。
LS-EMVAEは、推論時に12L-ECGと6L-ECGの両方でより良い予測を行い、診断ツールが限られている領域や全くない領域において、同等の解となる。
- 参考スコア(独自算出の注目度): 71.69065905466567
- License:
- Abstract: Pulmonary hypertension (PH) is frequently underdiagnosed in low- and middle-income countries (LMICs) primarily due to the scarcity of advanced diagnostic tools. Several studies in PH have applied machine learning to low-cost diagnostic tools like 12-lead ECG (12L-ECG), but they mainly focus on areas with limited resources, overlooking areas with no diagnostic tools, such as rural primary healthcare in LMICs. Recent studies have shown the effectiveness of 6-lead ECG (6L-ECG), as a cheaper and portable alternative in detecting various cardiac conditions, but its clinical value for PH detection is not well proved. Furthermore, existing methods treat 12L-/6L-ECG as a single modality, capturing only shared features while overlooking lead-specific features essential for identifying complex cardiac hemodynamic changes. In this paper, we propose Lead-Specific Electrocardiogram Multimodal Variational Autoencoder (LS-EMVAE), a model pre-trained on large-population 12L-ECG data and fine-tuned on task-specific data (12L-ECG or 6L-ECG). LS-EMVAE models each 12L-ECG lead as a separate modality and introduces a hierarchical expert composition using Mixture and Product of Experts for adaptive latent feature fusion between lead-specific and shared features. Unlike existing approaches, LS-EMVAE makes better predictions on both 12L-ECG and 6L-ECG at inference, making it an equitable solution for areas with limited or no diagnostic tools. We pre-trained LS-EMVAE on 800,000 publicly available 12L-ECG samples and fine-tuned it for two tasks: 1) PH detection and 2) phenotyping pre-/post-capillary PH, on in-house datasets of 892 and 691 subjects across 12L-ECG and 6L-ECG settings. Extensive experiments show that LS-EMVAE outperforms existing baselines in both ECG settings, while 6L-ECG achieves performance comparable to 12L-ECG, unlocking its potential for global PH screening in areas without diagnostic tools.
- Abstract(参考訳): 肺高血圧症 (PH) は, 低所得国や中所得国 (LMICs) で診断されることが多い。
PHにおけるいくつかの研究は、12L-ECG (12L-ECG)のような低コストの診断ツールに機械学習を適用してきたが、主に限られたリソースを持つ領域に焦点を当てており、LMICsにおける農村のプライマリヘルスケアのような診断ツールを持たない領域を見渡している。
近年, 各種心疾患の診断において, 6L-ECG(6L-ECG)が安価でポータブルな代替手段として有効であることが報告されているが, PH検出の臨床的意義はよく分かっていない。
さらに、12L-/6L-ECGを単一のモダリティとして扱い、共有された特徴のみを捉えながら、複雑な心血行動態の変化を特定するのに必須な鉛特異な特徴を見落としている。
本稿では,大人口12L-ECGデータに基づいて事前学習し,タスク固有データ(12L-ECGまたは6L-ECG)に基づいて微調整した,リード型心電図マルチモーダル変分自動エンコーダ(LS-EMVAE)を提案する。
LS-EMVAEは、各12L-ECGリードを別々のモダリティとしてモデル化し、リード固有特徴と共有特徴との適応的潜在特徴融合のためにMixtureとProduct of Expertsを用いた階層的エキスパート合成を導入する。
既存のアプローチとは異なり、LS-EMVAEは推論時に12L-ECGと6L-ECGの両方でより良い予測を行う。
LS-EMVAEを80,000の公開12L-ECGサンプルで事前訓練し、2つのタスクで微調整した。
1)PH検出・検出
2) 12L-ECG, 6L-ECG設定で, 892名, 691名を対象に, 前・後キャピラリーPHの表現型化を行った。
LS-EMVAEは、両方のECG設定で既存のベースラインを上回り、6L-ECGは12L-ECGに匹敵するパフォーマンスを達成し、診断ツールのない領域でグローバルPHスクリーニングの可能性を解放している。
関連論文リスト
- Foundation Models for ECG: Leveraging Hybrid Self-Supervised Learning for Advanced Cardiac Diagnostics [2.948318253609515]
自己教師付き学習(SSL)法で強化された基礎モデルを用いることで、心電図(ECG)解析に対する革新的なアプローチが提示される。
本研究は、生成学習やコントラスト学習を含むSSL手法を利用して、ECGの基礎モデルを包括的に評価する。
心臓診断の精度と信頼性を向上させる基礎モデルのためのハイブリッドラーニング(HL)を開発した。
論文 参考訳(メタデータ) (2024-06-26T02:24:13Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - Frozen Language Model Helps ECG Zero-Shot Learning [12.974685769614062]
マルチモーダルECG-Text Self-supervised pre-training (METS)を提案する。
トレーニング可能なECGエンコーダと凍結言語モデルを用いて,ペアのECGを組込み,個別に自動で臨床報告を行う。
下流の分類タスクでは、METSは注釈付きデータを使わずに、約10%のパフォーマンス改善を実現している。
論文 参考訳(メタデータ) (2023-03-22T05:01:14Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
本研究は,243名の非侵襲的特徴(年齢,性別,左室容積率,HRV15)を用いて,一連のANNの訓練と評価を行った。
最高の結果は、7つの入力パラメータと7つの隠れノードを使用して、トレーニングと検証データセットに対して98.9%と82%の精度で得られた。
論文 参考訳(メタデータ) (2020-10-29T19:14:41Z) - Interpretable Deep Learning for Automatic Diagnosis of 12-lead
Electrocardiogram [15.464768773761527]
12誘導心電図記録における心不整脈のマルチラベル分類のためのディープニューラルネットワークを開発した。
提案モデルでは、受信機動作特性曲線(AUC)0.970、F1スコア0.813の平均領域を達成した。
最も優れたリードは、12のリードのうち、リードI、aVR、V5である。
論文 参考訳(メタデータ) (2020-10-20T14:51:00Z) - Performance of Dual-Augmented Lagrangian Method and Common Spatial
Patterns applied in classification of Motor-Imagery BCI [68.8204255655161]
運動画像に基づく脳-コンピュータインタフェース(MI-BCI)は、神経リハビリテーションのための画期的な技術になる可能性がある。
使用する脳波信号のノイズの性質のため、信頼性の高いBCIシステムは特徴の最適化と抽出のために特別な手順を必要とする。
論文 参考訳(メタデータ) (2020-10-13T20:50:13Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。