論文の概要: Agent-Enhanced Large Language Models for Researching Political Institutions
- arxiv url: http://arxiv.org/abs/2503.13524v1
- Date: Fri, 14 Mar 2025 22:04:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:18:20.762814
- Title: Agent-Enhanced Large Language Models for Researching Political Institutions
- Title(参考訳): 政治機関研究のためのエージェント強化大規模言語モデル
- Authors: Joseph R. Loffredo, Suyeol Yun,
- Abstract要約: 本稿では,タスクを合理化できる動的エージェントとして,Large Language Models (LLM) がどのように機能するかを示す。
エージェント検索増強世代(Agentic RAG)が中心である。
このアプローチの可能性を実証するために、米国議会の研究者を支援するために設計されたLLMエージェントであるコングレスラを紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The applications of Large Language Models (LLMs) in political science are rapidly expanding. This paper demonstrates how LLMs, when augmented with predefined functions and specialized tools, can serve as dynamic agents capable of streamlining tasks such as data collection, preprocessing, and analysis. Central to this approach is agentic retrieval-augmented generation (Agentic RAG), which equips LLMs with action-calling capabilities for interaction with external knowledge bases. Beyond information retrieval, LLM agents may incorporate modular tools for tasks like document summarization, transcript coding, qualitative variable classification, and statistical modeling. To demonstrate the potential of this approach, we introduce CongressRA, an LLM agent designed to support scholars studying the U.S. Congress. Through this example, we highlight how LLM agents can reduce the costs of replicating, testing, and extending empirical research using the domain-specific data that drives the study of political institutions.
- Abstract(参考訳): 政治学における大規模言語モデル(LLM)の適用は急速に拡大している。
本稿では,データ収集や前処理,解析などのタスクを合理化できる動的エージェントとして,事前に定義された機能や特殊なツールで拡張されたLLMが,どのように機能するかを示す。
このアプローチの中心はエージェント検索強化生成(Agentic RAG)であり、外部知識ベースとのインタラクションのためのアクションコール機能を備えたLSMを備えている。
情報検索以外にも、LLMエージェントは文書要約、転写符号化、定性変数分類、統計モデリングなどのタスクのためのモジュラーツールを組み込むことができる。
このアプローチの可能性を実証するために、米国議会の研究者を支援するために設計されたLLMエージェントであるコングレスラを紹介する。
この例を通じて、LLMエージェントは、政治機関の研究を駆動するドメイン固有データを用いて、実証研究の複製、テスト、拡張のコストをいかに削減できるかを強調した。
関連論文リスト
- A Survey on Large Language Models with some Insights on their Capabilities and Limitations [0.3222802562733786]
大規模言語モデル(LLM)は、様々な言語関連タスクで顕著なパフォーマンスを示す。
LLMは、そのコア機能を超えて、創発的な能力を示す。
本稿では,これらの機能を実現する基盤となるコンポーネント,スケーリング機構,アーキテクチャ戦略について検討する。
論文 参考訳(メタデータ) (2025-01-03T21:04:49Z) - Practical Considerations for Agentic LLM Systems [5.455744338342196]
本稿では、確立されたアプリケーションパラダイムの文脈における研究コミュニティからの実行可能な洞察と考察について述べる。
すなわち、アプリケーション中心の文献における一般的な実践に基づいて、関連する研究成果を4つの幅広いカテゴリ – プランニング、メモリツール、コントロールフロー – に位置づける。
論文 参考訳(メタデータ) (2024-12-05T11:57:49Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - A Survey on the Memory Mechanism of Large Language Model based Agents [66.4963345269611]
大規模言語モデル(LLM)に基づくエージェントは、最近、研究や産業コミュニティから多くの注目を集めている。
LLMベースのエージェントは、現実の問題を解決する基礎となる自己進化能力に特徴付けられる。
エージェント-環境相互作用をサポートする重要なコンポーネントは、エージェントのメモリである。
論文 参考訳(メタデータ) (2024-04-21T01:49:46Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - MatPlotAgent: Method and Evaluation for LLM-Based Agentic Scientific Data Visualization [86.61052121715689]
MatPlotAgentは、科学的データ可視化タスクを自動化するために設計された、モデルに依存しないフレームワークである。
MatPlotBenchは、100人の検証されたテストケースからなる高品質なベンチマークである。
論文 参考訳(メタデータ) (2024-02-18T04:28:28Z) - Large Language Model based Multi-Agents: A Survey of Progress and Challenges [44.92286030322281]
大規模言語モデル(LLM)は、幅広いタスクで大きな成功を収めています。
近年, 1 つの LLM を単一計画や意思決定エージェントとして利用する手法の開発により, 複雑な問題解決や世界シミュレーションにおいて, LLM ベースのマルチエージェントシステムは大きな進歩を遂げている。
論文 参考訳(メタデータ) (2024-01-21T23:36:14Z) - Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects [32.91556128291915]
本稿では, シングルエージェントおよびマルチエージェントシステムにおける知的エージェントの詳細な概要を提供するため, 現在の研究状況について調査する。
定義、研究フレームワーク、その構成、認知と計画方法、ツール利用、環境フィードバックに対する反応などの基礎的な構成要素を網羅する。
我々は、AIと自然言語処理の進化の展望を考慮し、LLMベースのエージェントの展望を思い浮かべて結論付ける。
論文 参考訳(メタデータ) (2024-01-07T09:08:24Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - TPTU: Large Language Model-based AI Agents for Task Planning and Tool
Usage [28.554981886052953]
大規模言語モデル(LLM)は、様々な現実世界のアプリケーションのための強力なツールとして登場した。
LLMの本質的な生成能力は、その長所にもかかわらず、複雑なタスクを扱うには不十分である。
本稿では,LLMベースのAIエージェントに適した構造化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-07T09:22:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。