論文の概要: From Demonstrations to Rewards: Alignment Without Explicit Human Preferences
- arxiv url: http://arxiv.org/abs/2503.13538v1
- Date: Sat, 15 Mar 2025 20:53:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:17:29.072457
- Title: From Demonstrations to Rewards: Alignment Without Explicit Human Preferences
- Title(参考訳): デモからリワードへ: 明示的な人間の選好を伴わないアライメント
- Authors: Siliang Zeng, Yao Liu, Huzefa Rangwala, George Karypis, Mingyi Hong, Rasool Fakoor,
- Abstract要約: 本稿では,逆強化学習原理に基づく学習アライメントの新たな視点を提案する。
大規模な選好データに頼る代わりに、デモデータから報酬モデルを直接学習する。
- 参考スコア(独自算出の注目度): 55.988923803469305
- License:
- Abstract: One of the challenges of aligning large models with human preferences lies in both the data requirements and the technical complexities of current approaches. Predominant methods, such as RLHF, involve multiple steps, each demanding distinct types of data, including demonstration data and preference data. In RLHF, human preferences are typically modeled through a reward model, which serves as a proxy to guide policy learning during the reinforcement learning stage, ultimately producing a policy aligned with human preferences. However, in this paper, we propose a fresh perspective on learning alignment based on inverse reinforcement learning principles, where the optimal policy is still derived from reward maximization. However, instead of relying on preference data, we directly learn the reward model from demonstration data. This new formulation offers the flexibility to be applied even when only demonstration data is available, a capability that current RLHF methods lack, and it also shows that demonstration data offers more utility than what conventional wisdom suggests. Our extensive evaluation, based on public reward benchmark, HuggingFace Open LLM Leaderboard and MT-Bench, demonstrates that our approach compares favorably to state-of-the-art methods that rely solely on demonstration data.
- Abstract(参考訳): 大規模モデルを人間の好みに合わせることの課題の1つは、データ要件と現在のアプローチの技術的な複雑さの両方にある。
RLHFのような優位な方法には、複数のステップがあり、それぞれがデモデータや好みデータを含む、異なるタイプのデータを要求する。
RLHFでは、人間の嗜好は典型的には報酬モデルによってモデル化され、それは強化学習段階における政策学習を指導するプロキシとして機能し、最終的には人間の嗜好に沿った政策を生成する。
しかし,本稿では,報酬の最大化から最適方針を導出する逆強化学習の原則に基づく,学習アライメントの新たな視点を提案する。
しかし、好みデータに頼る代わりに、実演データから報酬モデルを直接学習する。
この新たな定式化は、デモデータが利用可能であっても適用可能な柔軟性を提供し、現在のRLHFメソッドに欠けている機能を提供し、また、デモデータが従来の知恵よりも有用であることを示している。
我々の評価は、公開報酬ベンチマーク、HuggingFace Open LLM Leaderboard、MT-Benchに基づいており、我々のアプローチがデモデータのみに依存する最先端の手法と好適に比較されていることを示している。
関連論文リスト
- PILAF: Optimal Human Preference Sampling for Reward Modeling [14.336058926701432]
そこで我々は,プライオリティラベリングのための新しい応答サンプリング戦略であるPILAF(Policy-Interpolated Learning for Aligned Feedback)を提案する。
PILAFは、優先学習と基礎となるオラクル報酬の最大化を明確に調整する。
論文 参考訳(メタデータ) (2025-02-06T18:09:00Z) - Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
我々は、報酬モデルと政策モデルを同時に構築するために、逆強化学習(IRL)技術を活用することを提案する。
提案アルゴリズムはIRL問題の定常解に収束することを示す。
その結果,アライメントプロセス全体を通じて報酬学習を活用することは有益であることが示唆された。
論文 参考訳(メタデータ) (2024-05-28T07:11:05Z) - Inverse-RLignment: Large Language Model Alignment from Demonstrations through Inverse Reinforcement Learning [62.05713042908654]
本稿では,これらの課題を克服するために,高品質な実演データを活用する新しいアプローチであるAlignment from Demonstrations (AfD)を紹介する。
AfDをシーケンシャルな意思決定フレームワークで形式化し、報酬信号の欠如というユニークな課題を強調します。
そこで本研究では,AfD に適した報酬モデル上で補間を行う計算効率のよいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-24T15:13:53Z) - Fine-Tuning Language Models with Reward Learning on Policy [68.70065254564642]
人間からのフィードバックからの強化学習(RLHF)は、大きな言語モデル(LLM)を人間の好みに合わせる効果的なアプローチとして現れている。
その人気にもかかわらず、(固定された)報酬モデルが不正確な流通に悩まされることがある。
本稿では、政策サンプルを用いて報酬モデルを洗練し、流通を継続する、教師なしのフレームワークであるポリシーに関する報酬学習(RLP)を提案する。
論文 参考訳(メタデータ) (2024-03-28T10:02:10Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
本稿では,データセットにおける不正確で曖昧な嗜好の影響を軽減するために,一連の新しい手法を紹介する。
また、選択された応答と拒否された応答を区別する報酬モデルの有用性を高めるために、対照的な学習を導入する。
論文 参考訳(メタデータ) (2024-01-11T17:56:59Z) - ULMA: Unified Language Model Alignment with Human Demonstration and
Point-wise Preference [16.73260713938154]
典型的なアライメント手順は、教師付き微調整と選好学習からなる。
本稿では,ポイントワイズフィードバックを効果的に活用する新しい選好学習手法であるPoint-wise Direct Preference Optimizationを紹介する。
我々の研究は、教師付き微調整とポイントワイド選好学習の新たなつながりを明らかにし、統一言語モデルアライメント(英語版)に到達した。
論文 参考訳(メタデータ) (2023-12-05T07:52:12Z) - Pre-trained Recommender Systems: A Causal Debiasing Perspective [19.712997823535066]
本研究では,異なるドメインから抽出した汎用ユーザ・イテムインタラクションデータをトレーニングすることで,ユニバーサルインタラクションパターンをキャプチャする汎用レコメンデータを開発する。
実験により,提案モデルにより,ゼロショットと少数ショットの学習環境での推薦性能が大幅に向上する可能性が示唆された。
論文 参考訳(メタデータ) (2023-10-30T03:37:32Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
本稿では,シーケンスレコメンデーションのための自己改善学習のためのモデルS3-Recを提案する。
そこで本稿では,属性,項目,サブシーケンス,シーケンス間の相関関係を学習するために,4つの補助的自己教師対象を考案する。
6つの実世界のデータセットで実施された大規模な実験は、既存の最先端手法よりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-18T11:44:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。