論文の概要: Classification of power quality events in the transmission grid: comparative evaluation of different machine learning models
- arxiv url: http://arxiv.org/abs/2503.13566v1
- Date: Mon, 17 Mar 2025 09:02:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:14:23.484238
- Title: Classification of power quality events in the transmission grid: comparative evaluation of different machine learning models
- Title(参考訳): 送電網における電力品質事象の分類:異なる機械学習モデルの比較評価
- Authors: Umut Güvengir, Dilek Küçük, Serkan Buhan, Cuma Ali Mantaş, Murathan Yeniceli,
- Abstract要約: 本稿では、パワークオリティイベントの分類のための機械学習モデルの比較評価結果について述べる。
最も優れた結果を得るモデルは、トルコ電力伝送システムのための大規模電力品質およびグリッド監視システムのイベント分類モジュールに統合される。
- 参考スコア(独自算出の注目度): 1.3980986259786223
- License:
- Abstract: Automatic classification of electric power quality events with respect to their root causes is critical for electrical grid management. In this paper, we present comparative evaluation results of an extensive set of machine learning models for the classification of power quality events, based on their root causes. After extensive experiments using different machine learning libraries, it is observed that the best performing learning models turn out to be Cubic SVM and XGBoost. During error analysis, it is observed that the main source of performance degradation for both models is the classification of ABC faults as ABCG faults, or vice versa. Ultimately, the models achieving the best results will be integrated into the event classification module of a large-scale power quality and grid monitoring system for the Turkish electricity transmission system.
- Abstract(参考訳): 電力品質イベントの根本原因に関する自動分類は電力グリッド管理にとって重要である。
本稿では、その根本原因に基づいて、電力品質事象の分類のための機械学習モデルの比較評価結果を提案する。
異なる機械学習ライブラリを用いた大規模な実験の結果、最高の学習モデルが立方体SVMとXGBoostであることが判明した。
誤差解析において、両モデルの性能劣化の主な原因は、ABCG断層をABCG断層と分類することである。
最終的には、トルコ電力送電システムのための大規模電力品質およびグリッド監視システムのイベント分類モジュールに統合される。
関連論文リスト
- Pretrained Event Classification Model for High Energy Physics Analysis [0.6545293330186887]
グラフニューラルネットワークアーキテクチャ上に構築された高エネルギー物理におけるイベント分類の基礎モデルを提案する。
12個の物理過程にまたがる1億2000万個の陽子-陽子衝突現象を訓練した。
このモデルは、挑戦的なマルチクラスおよびマルチラベル分類タスクを用いて、衝突データの汎用的で堅牢な表現を学ぶために事前訓練されている。
論文 参考訳(メタデータ) (2024-12-14T03:45:07Z) - Revitalizing Reconstruction Models for Multi-class Anomaly Detection via Class-Aware Contrastive Learning [19.114941437668705]
クラス認識型コントラスト学習(CL)を取り入れたプラグアンドプレイ修正を提案する。
4つのデータセットにまたがる実験により、我々のアプローチの有効性が検証され、高度な手法と比較して大幅に改善され、性能が向上した。
論文 参考訳(メタデータ) (2024-12-06T04:31:09Z) - Multivariate Physics-Informed Convolutional Autoencoder for Anomaly Detection in Power Distribution Systems with High Penetration of DERs [0.0]
本稿では,物理インフォームド・コンボリューション・オートエンコーダ(PIConvAE)モデルを提案する。
提案モデルの性能評価は,カリフォルニア州リバーサイドのIEEE 123バスシステムと実世界の給電システムを用いて行った。
論文 参考訳(メタデータ) (2024-06-05T04:28:57Z) - Predictive Analytics of Varieties of Potatoes [2.336821989135698]
本研究では, 育種試験におけるサツマイモクローンの選択プロセスの向上を目的とした, 機械学習アルゴリズムの適用について検討する。
本研究は, 高収率, 耐病性, 耐気候性ポテト品種を効率的に同定することの課題に対処する。
論文 参考訳(メタデータ) (2024-04-04T00:49:05Z) - Toward Multi-class Anomaly Detection: Exploring Class-aware Unified Model against Inter-class Interference [67.36605226797887]
統一型異常検出(MINT-AD)のためのマルチクラスインプリシトニューラル表現変換器を提案する。
マルチクラス分布を学習することにより、モデルが変換器デコーダのクラス対応クエリ埋め込みを生成する。
MINT-ADは、カテゴリと位置情報を特徴埋め込み空間に投影することができ、さらに分類と事前確率損失関数によって監督される。
論文 参考訳(メタデータ) (2024-03-21T08:08:31Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
調査は、センサーの故障やノイズなど、様々な摂動を扱うモデルの能力に焦点を当てている。
我々は,これらのモデルの一般化と伝達学習能力を,アウト・オブ・ディストリビューション(OOD)サンプルに公開することによって検証する。
論文 参考訳(メタデータ) (2023-06-13T12:43:59Z) - Pre-training Language Model as a Multi-perspective Course Learner [103.17674402415582]
本研究では,サンプル効率のよい事前学習のためのマルチパースペクティブ・コース・ラーニング(MCL)手法を提案する。
本研究では,3つの自己超越コースが,「綱引き」力学の固有の欠陥を軽減するように設計されている。
本手法は,GLUEおよびSQuAD 2.0ベンチマークにおいて,ELECTRAの平均性能をそれぞれ2.8%,絶対点を3.2%向上させる。
論文 参考訳(メタデータ) (2023-05-06T09:02:10Z) - Class-Incremental Learning: A Survey [84.30083092434938]
CIL(Class-Incremental Learning)は、学習者が新しいクラスの知識を段階的に取り入れることを可能にする。
CILは、前者の特徴を壊滅的に忘れる傾向にあり、その性能は劇的に低下する。
ベンチマーク画像分類タスクにおける17の手法の厳密で統一的な評価を行い、異なるアルゴリズムの特徴を明らかにする。
論文 参考訳(メタデータ) (2023-02-07T17:59:05Z) - CONVIQT: Contrastive Video Quality Estimator [63.749184706461826]
知覚ビデオ品質評価(VQA)は、多くのストリーミングおよびビデオ共有プラットフォームにおいて不可欠な要素である。
本稿では,視覚的に関連のある映像品質表現を自己指導的に学習する問題について考察する。
本研究は, 自己教師型学習を用いて, 知覚力による説得力のある表現が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T15:22:01Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
既存のクラスインクリメンタルラーニング(CIL)手法は、データラベルに敏感な教師付き分類フレームワークに基づいている。
新しいクラスデータに基づいて更新する場合、それらは破滅的な忘れがちである。
本稿では,SSCILにおける自己指導型表現学習のパフォーマンスを初めて考察する。
論文 参考訳(メタデータ) (2021-11-18T06:58:19Z) - Learning to Fairly Classify the Quality of Wireless Links [0.5352699766206808]
本稿では,高性能な木質リンク品質分類器を提案し,マイノリティクラスを公平に分類する。
選択された不均衡データセット上で,木モデルとMLP非線形モデルと2つの線形モデル,すなわちロジスティック回帰(LR)とSVMを比較した。
本研究は,(1)非線形モデルが一般に線形モデルよりも若干優れていること,2)提案する非線形木ベースモデルが,f1,トレーニング時間,公平性を考慮した最高のパフォーマンストレードオフをもたらすこと,3)正確性のみに基づく単一メトリクス集約評価が貧弱であることを示す。
論文 参考訳(メタデータ) (2021-02-23T12:23:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。