論文の概要: Analytic Subspace Routing: How Recursive Least Squares Works in Continual Learning of Large Language Model
- arxiv url: http://arxiv.org/abs/2503.13575v1
- Date: Mon, 17 Mar 2025 13:40:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:18:24.030782
- Title: Analytic Subspace Routing: How Recursive Least Squares Works in Continual Learning of Large Language Model
- Title(参考訳): 解析的部分空間ルーティング:大規模言語モデルの連続学習における再帰的最小二乗の動作
- Authors: Kai Tong, Kang Pan, Xiao Zhang, Erli Meng, Run He, Yawen Cui, Nuoyan Guo, Huiping Zhuang,
- Abstract要約: 大規模言語モデル(LLM)には、多様な言語関連タスクを処理できる機能がある。
大規模言語モデル(LLM)における継続的な学習は、LLMを新しいタスクに継続的に適応させることを目的としている。
本稿では,これらの課題に対処するため,ASR(Analytic Subspace Routing)を提案する。
- 参考スコア(独自算出の注目度): 6.42114585934114
- License:
- Abstract: Large Language Models (LLMs) possess encompassing capabilities that can process diverse language-related tasks. However, finetuning on LLMs will diminish this general skills and continual finetuning will further cause severe degradation on accumulated knowledge. Recently, Continual Learning (CL) in Large Language Models (LLMs) arises which aims to continually adapt the LLMs to new tasks while maintaining previously learned knowledge and inheriting general skills. Existing techniques either leverage previous data to replay, leading to extra computational costs, or utilize a single parameter-efficient module to learn the downstream task, constraining new knowledge absorption with interference between different tasks. Toward these issues, this paper proposes Analytic Subspace Routing(ASR) to address these challenges. For each task, we isolate the learning within a subspace of deep layers' features via low-rank adaptation, eliminating knowledge interference between different tasks. Additionally, we propose an analytic routing mechanism to properly utilize knowledge learned in different subspaces. Our approach employs Recursive Least Squares to train a multi-task router model, allowing the router to dynamically adapt to incoming data without requiring access to historical data. Also, the router effectively assigns the current task to an appropriate subspace and has a non-forgetting property of previously learned tasks with a solid theoretical guarantee. Experimental results demonstrate that our method achieves near-perfect retention of prior knowledge while seamlessly integrating new information, effectively overcoming the core limitations of existing methods. Our code will be released after acceptance.
- Abstract(参考訳): 大規模言語モデル(LLM)は多様な言語関連タスクを処理できる機能を含んでいる。
しかし、LLMの微調整は、この一般的なスキルを低下させ、連続的な微調整は、蓄積した知識を著しく劣化させる。
近年,Lumge Language Models (LLMs) における継続学習 (CL) は,従来の知識を維持し,一般的なスキルを継承しつつ,LLMを新たなタスクに継続的に適応することを目的としている。
既存の技術は、以前のデータを利用して再生し、余分な計算コストをもたらすか、あるいは1つのパラメータ効率のモジュールを使って下流のタスクを学習し、異なるタスク間の干渉によって新しい知識吸収を制限している。
本稿では,これらの課題に対処するため,ASR(Analytic Subspace Routing)を提案する。
各タスクに対して,各タスク間の知識干渉を排除し,低ランク適応による深層特徴のサブ空間内での学習を分離する。
さらに,異なるサブ空間で学習した知識を適切に活用するための解析的ルーティング機構を提案する。
提案手法では,マルチタスクルータモデルのトレーニングにRecursive Least Squaresを用いることで,履歴データへのアクセスを必要とせずに,ルータが動的に受信データに適応できるようにする。
また、ルータは、現在のタスクを適切なサブスペースに効果的に割り当て、確固とした理論的保証とともに、予め学習したタスクの非鍛造性を有する。
実験の結果,既存の手法の限界を克服しつつ,新たな情報をシームレスに統合しながら,事前知識のほぼ完全保持を実現することができた。
私たちのコードは受け入れられてから解放されます。
関連論文リスト
- Multi-Stage Knowledge Integration of Vision-Language Models for Continual Learning [79.46570165281084]
蒸留法における人間の学習過程をエミュレートするマルチステージ知識統合ネットワーク(MulKI)を提案する。
Mulkiは、イデオロギーの排除、新しいイデオロギーの追加、イデオロギーの排除、コネクティクスの作りという4つの段階を通じてこれを達成している。
提案手法は,下流タスク間の連続学習をサポートしながら,ゼロショット能力の維持における大幅な改善を示す。
論文 参考訳(メタデータ) (2024-11-11T07:36:19Z) - Beyond Prompt Learning: Continual Adapter for Efficient Rehearsal-Free Continual Learning [22.13331870720021]
C-ADA (Continuous Adapter) という,RFCL タスクに対する超高速学習手法を提案する。
C-ADAは、CALの特定の重みを柔軟に拡張し、各タスクの新たな知識を学び、古い重みを凍結して以前の知識を保存する。
提案手法は,現状のSOTA(State-of-the-art)法よりも優れ,性能とトレーニング速度を大幅に向上させる。
論文 参考訳(メタデータ) (2024-07-14T17:40:40Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
ドメインクラスのインクリメンタル学習は現実的だが、継続的な学習シナリオである。
これらの多様なタスクに対処するために、事前訓練されたビジョンランゲージモデル(VLM)を導入し、その強力な一般化性を実現する。
事前訓練されたVLMにエンコードされた知識は、新しいタスクに適応する際に妨げられ、固有のゼロショット能力を損なう。
既存の手法では、膨大なオーバーヘッドを必要とする余分なデータセットに知識蒸留でVLMをチューニングすることで、この問題に対処している。
我々は、事前学習した知識を保持できるDIKI(Distributed-Aware Interference-free Knowledge Integration)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-07T12:19:37Z) - Subspace Distillation for Continual Learning [27.22147868163214]
本稿では,ニューラルネットワークの多様体構造を考慮した知識蒸留手法を提案する。
部分空間を用いたモデリングは、雑音に対するロバスト性など、いくつかの興味深い特性を提供することを示した。
実験により,提案手法は,いくつかの挑戦的データセットにおいて,様々な連続学習法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-07-31T05:59:09Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
本稿では,2つの補完学習サブネットワークス間のシナジーを通じて連続的に学習するリハーサルフリーなCILアプローチを提案する。
提案手法は, 精度向上, メモリコスト, トレーニング効率, タスク順序など, 最先端手法と競合する結果が得られる。
論文 参考訳(メタデータ) (2023-06-21T01:43:25Z) - Online Continual Learning via the Knowledge Invariant and Spread-out
Properties [4.109784267309124]
継続的な学習の鍵となる課題は破滅的な忘れ方だ。
知識不変性とスプレッドアウト特性(OCLKISP)を用いたオンライン連続学習法を提案する。
提案手法を,CIFAR 100, Split SVHN, Split CUB200, Split Tiny-Image-Netの4つのベンチマークで実証的に評価した。
論文 参考訳(メタデータ) (2023-02-02T04:03:38Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
継続学習(CL)手法は、機械学習モデルが、以前にマスターされたタスクを壊滅的に忘れることなく、新しいタスクを学習できるようにすることを目的としている。
既存のCLアプローチは、しばしば、事前に確認されたサンプルのバッファを保持し、知識蒸留を行い、あるいはこの目標に向けて正規化技術を使用する。
我々は,現在および過去のタスクを任意の段階で学習するために,スパースニューロンのみを活性化し,選択することを提案する。
論文 参考訳(メタデータ) (2022-02-21T13:25:03Z) - Fully Online Meta-Learning Without Task Boundaries [80.09124768759564]
この性質のオンライン問題にメタラーニングを適用する方法について検討する。
タスク境界に関する基礎的な真理知識を必要としない完全オンラインメタラーニング(FOML)アルゴリズムを提案する。
実験の結果,FOMLは最先端のオンライン学習手法よりも高速に新しいタスクを学習できることがわかった。
論文 参考訳(メタデータ) (2022-02-01T07:51:24Z) - Continual Learning in Low-rank Orthogonal Subspaces [86.36417214618575]
連続学習(CL)では、学習者は一連のタスクに直面して次々に到着し、学習経験が終わるとすべてのタスクを覚えることが目的である。
CLの以前の技術は、タスク間の干渉を減らすためにエピソードメモリ、パラメータ正規化、ネットワーク構造を使用していたが、最終的には、全てのアプローチが共同ベクトル空間で異なるタスクを学習する。
干渉を最小限に抑えるために互いに直交する異なる(低ランクな)ベクトル部分空間でタスクを学習することを提案する。
論文 参考訳(メタデータ) (2020-10-22T12:07:43Z) - Curriculum Learning for Reinforcement Learning Domains: A Framework and
Survey [53.73359052511171]
強化学習(Reinforcement Learning, RL)は、エージェントが限られた環境フィードバックしか持たないシーケンシャルな意思決定タスクに対処するための一般的なパラダイムである。
本稿では、RLにおけるカリキュラム学習(CL)の枠組みを提案し、既存のCLメソッドを仮定、能力、目標の観点から調査・分類する。
論文 参考訳(メタデータ) (2020-03-10T20:41:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。