Text-Guided Image Invariant Feature Learning for Robust Image Watermarking
- URL: http://arxiv.org/abs/2503.13805v1
- Date: Tue, 18 Mar 2025 01:32:38 GMT
- Title: Text-Guided Image Invariant Feature Learning for Robust Image Watermarking
- Authors: Muhammad Ahtesham, Xin Zhong,
- Abstract summary: We propose a novel text-guided invariant feature learning framework for robust image watermarking.<n>We evaluate the proposed method across multiple datasets, demonstrating superior robustness against various image transformations.
- Score: 1.4042211166197214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring robustness in image watermarking is crucial for and maintaining content integrity under diverse transformations. Recent self-supervised learning (SSL) approaches, such as DINO, have been leveraged for watermarking but primarily focus on general feature representation rather than explicitly learning invariant features. In this work, we propose a novel text-guided invariant feature learning framework for robust image watermarking. Our approach leverages CLIP's multimodal capabilities, using text embeddings as stable semantic anchors to enforce feature invariance under distortions. We evaluate the proposed method across multiple datasets, demonstrating superior robustness against various image transformations. Compared to state-of-the-art SSL methods, our model achieves higher cosine similarity in feature consistency tests and outperforms existing watermarking schemes in extraction accuracy under severe distortions. These results highlight the efficacy of our method in learning invariant representations tailored for robust deep learning-based watermarking.
Related papers
- ViLa-MIL: Dual-scale Vision-Language Multiple Instance Learning for Whole Slide Image Classification [52.405499816861635]
Multiple instance learning (MIL)-based framework has become the mainstream for processing the whole slide image (WSI)
We propose a dual-scale vision-language multiple instance learning (ViLa-MIL) framework for whole slide image classification.
arXiv Detail & Related papers (2025-02-12T13:28:46Z) - ConDL: Detector-Free Dense Image Matching [2.7582789611575897]
We introduce a deep-learning framework designed for estimating dense image correspondences.
Our fully convolutional model generates dense feature maps for images, where each pixel is associated with a descriptor that can be matched across multiple images.
arXiv Detail & Related papers (2024-08-05T18:34:15Z) - SWIFT: Semantic Watermarking for Image Forgery Thwarting [12.515429388063534]
We modify the HiDDeN deep-learning watermarking architecture to embed and extract high-dimensional real vectors representing image captions.
Our method improves significantly on both malign and benign edits.
arXiv Detail & Related papers (2024-07-26T09:50:13Z) - Fine-grained Image-to-LiDAR Contrastive Distillation with Visual Foundation Models [55.99654128127689]
Visual Foundation Models (VFMs) are used to generate semantic labels for weakly-supervised pixel-to-point contrastive distillation.<n>We adapt sampling probabilities of points to address imbalances in spatial distribution and category frequency.<n>Our approach consistently surpasses existing image-to-LiDAR contrastive distillation methods in downstream tasks.
arXiv Detail & Related papers (2024-05-23T07:48:19Z) - Deep Learning-based Text-in-Image Watermarking [4.938567115890841]
We introduce a novel deep learning-based approach to text-in-image watermarking.
Our method embeds and extracts textual information within images to enhance data security and integrity.
arXiv Detail & Related papers (2024-04-19T18:52:07Z) - Introspective Deep Metric Learning [91.47907685364036]
We propose an introspective deep metric learning framework for uncertainty-aware comparisons of images.
The proposed IDML framework improves the performance of deep metric learning through uncertainty modeling.
arXiv Detail & Related papers (2023-09-11T16:21:13Z) - Improving Diffusion-based Image Translation using Asymmetric Gradient
Guidance [51.188396199083336]
We present an approach that guides the reverse process of diffusion sampling by applying asymmetric gradient guidance.
Our model's adaptability allows it to be implemented with both image-fusion and latent-dif models.
Experiments show that our method outperforms various state-of-the-art models in image translation tasks.
arXiv Detail & Related papers (2023-06-07T12:56:56Z) - Masked and Adaptive Transformer for Exemplar Based Image Translation [16.93344592811513]
Cross-domain semantic matching is challenging.
We propose a masked and adaptive transformer (MAT) for learning accurate cross-domain correspondence.
We devise a novel contrastive style learning method, for acquire quality-discriminative style representations.
arXiv Detail & Related papers (2023-03-30T03:21:14Z) - Introspective Deep Metric Learning for Image Retrieval [80.29866561553483]
We argue that a good similarity model should consider the semantic discrepancies with caution to better deal with ambiguous images for more robust training.
We propose to represent an image using not only a semantic embedding but also an accompanying uncertainty embedding, which describes the semantic characteristics and ambiguity of an image, respectively.
The proposed IDML framework improves the performance of deep metric learning through uncertainty modeling and attains state-of-the-art results on the widely used CUB-200-2011, Cars196, and Stanford Online Products datasets.
arXiv Detail & Related papers (2022-05-09T17:51:44Z) - Learning Contrastive Representation for Semantic Correspondence [150.29135856909477]
We propose a multi-level contrastive learning approach for semantic matching.
We show that image-level contrastive learning is a key component to encourage the convolutional features to find correspondence between similar objects.
arXiv Detail & Related papers (2021-09-22T18:34:14Z) - Learning Transformation-Aware Embeddings for Image Forensics [15.484408315588569]
Image Provenance Analysis aims at discovering relationships among different manipulated image versions that share content.
One of the main sub-problems for provenance analysis that has not yet been addressed directly is the edit ordering of images that share full content or are near-duplicates.
This paper introduces a novel deep learning-based approach to provide a plausible ordering to images that have been generated from a single image through transformations.
arXiv Detail & Related papers (2020-01-13T22:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.