TGBFormer: Transformer-GraphFormer Blender Network for Video Object Detection
- URL: http://arxiv.org/abs/2503.13903v1
- Date: Tue, 18 Mar 2025 05:03:05 GMT
- Title: TGBFormer: Transformer-GraphFormer Blender Network for Video Object Detection
- Authors: Qiang Qi, Xiao Wang,
- Abstract summary: We propose a Transformer-GraphFormer Blender Network (TGBFormer) for video object detection.<n>First, we develop a spatial-temporal transformer module to aggregate global contextual information.<n>Second, we introduce a spatial-temporal GraphFormer module that utilizes local spatial and temporal relationships to aggregate features.<n>Third, we design a global-local feature blender module to adaptively couple transformer-based global representations and GraphFormer-based local representations.
- Score: 10.69410997096889
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Video object detection has made significant progress in recent years thanks to convolutional neural networks (CNNs) and vision transformers (ViTs). Typically, CNNs excel at capturing local features but struggle to model global representations. Conversely, ViTs are adept at capturing long-range global features but face challenges in representing local feature details. Off-the-shelf video object detection methods solely rely on CNNs or ViTs to conduct feature aggregation, which hampers their capability to simultaneously leverage global and local information, thereby resulting in limited detection performance. In this paper, we propose a Transformer-GraphFormer Blender Network (TGBFormer) for video object detection, with three key technical improvements to fully exploit the advantages of transformers and graph convolutional networks while compensating for their limitations. First, we develop a spatial-temporal transformer module to aggregate global contextual information, constituting global representations with long-range feature dependencies. Second, we introduce a spatial-temporal GraphFormer module that utilizes local spatial and temporal relationships to aggregate features, generating new local representations that are complementary to the transformer outputs. Third, we design a global-local feature blender module to adaptively couple transformer-based global representations and GraphFormer-based local representations. Extensive experiments demonstrate that our TGBFormer establishes new state-of-the-art results on the ImageNet VID dataset. Particularly, our TGBFormer achieves 86.5% mAP while running at around 41.0 FPS on a single Tesla A100 GPU.
Related papers
- A Novel Shape Guided Transformer Network for Instance Segmentation in Remote Sensing Images [4.14360329494344]
We propose a novel Shape Guided Transformer Network (SGTN) to accurately extract objects at the instance level.
Inspired by the global contextual modeling capacity of the self-attention mechanism, we propose an effective transformer encoder termed LSwin.
Our SGTN achieves the highest average precision (AP) scores on two single-class public datasets.
arXiv Detail & Related papers (2024-12-31T09:25:41Z) - Depth-Wise Convolutions in Vision Transformers for Efficient Training on Small Datasets [11.95214938154427]
Vision Transformer (ViT) captures global information by dividing images into patches.
ViT lacks inductive bias during image or video dataset training.
We present a lightweight Depth-Wise Convolution module as a shortcut in ViT models.
arXiv Detail & Related papers (2024-07-28T04:23:40Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - DuoFormer: Leveraging Hierarchical Visual Representations by Local and Global Attention [1.5624421399300303]
We propose a novel hierarchical transformer model that adeptly integrates the feature extraction capabilities of Convolutional Neural Networks (CNNs) with the advanced representational potential of Vision Transformers (ViTs)
Addressing the lack of inductive biases and dependence on extensive training datasets in ViTs, our model employs a CNN backbone to generate hierarchical visual representations.
These representations are then adapted for transformer input through an innovative patch tokenization.
arXiv Detail & Related papers (2024-07-18T22:15:35Z) - Global-to-Local Modeling for Video-based 3D Human Pose and Shape
Estimation [53.04781510348416]
Video-based 3D human pose and shape estimations are evaluated by intra-frame accuracy and inter-frame smoothness.
We propose to structurally decouple the modeling of long-term and short-term correlations in an end-to-end framework, Global-to-Local Transformer (GLoT)
Our GLoT surpasses previous state-of-the-art methods with the lowest model parameters on popular benchmarks, i.e., 3DPW, MPI-INF-3DHP, and Human3.6M.
arXiv Detail & Related papers (2023-03-26T14:57:49Z) - DLGSANet: Lightweight Dynamic Local and Global Self-Attention Networks
for Image Super-Resolution [83.47467223117361]
We propose an effective lightweight dynamic local and global self-attention network (DLGSANet) to solve image super-resolution.
Motivated by the network designs of Transformers, we develop a simple yet effective multi-head dynamic local self-attention (MHDLSA) module to extract local features efficiently.
To overcome this problem, we develop a sparse global self-attention (SparseGSA) module to select the most useful similarity values.
arXiv Detail & Related papers (2023-01-05T12:06:47Z) - Graph Neural Network and Spatiotemporal Transformer Attention for 3D
Video Object Detection from Point Clouds [94.21415132135951]
We propose to detect 3D objects by exploiting temporal information in multiple frames.
We implement our algorithm based on prevalent anchor-based and anchor-free detectors.
arXiv Detail & Related papers (2022-07-26T05:16:28Z) - Transformer-Guided Convolutional Neural Network for Cross-View
Geolocalization [20.435023745201878]
We propose a novel Transformer-guided convolutional neural network (TransGCNN) architecture.
Our TransGCNN consists of a CNN backbone extracting feature map from an input image and a Transformer head modeling global context.
Experiments on popular benchmark datasets demonstrate that our model achieves top-1 accuracy of 94.12% and 84.92% on CVUSA and CVACT_val, respectively.
arXiv Detail & Related papers (2022-04-21T08:46:41Z) - Unifying Global-Local Representations in Salient Object Detection with Transformer [55.23033277636774]
We introduce a new attention-based encoder, vision transformer, into salient object detection.
With the global view in very shallow layers, the transformer encoder preserves more local representations.
Our method significantly outperforms other FCN-based and transformer-based methods in five benchmarks.
arXiv Detail & Related papers (2021-08-05T17:51:32Z) - Conformer: Local Features Coupling Global Representations for Visual
Recognition [72.9550481476101]
We propose a hybrid network structure, termed Conformer, to take advantage of convolutional operations and self-attention mechanisms for enhanced representation learning.
Experiments show that Conformer, under the comparable parameter complexity, outperforms the visual transformer (DeiT-B) by 2.3% on ImageNet.
arXiv Detail & Related papers (2021-05-09T10:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.