論文の概要: Reconstructing Cell Lineage Trees from Phenotypic Features with Metric Learning
- arxiv url: http://arxiv.org/abs/2503.13925v1
- Date: Tue, 18 Mar 2025 05:41:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:15:12.250711
- Title: Reconstructing Cell Lineage Trees from Phenotypic Features with Metric Learning
- Title(参考訳): メトリラーニングによる現象型特徴からの細胞系統樹の再構成
- Authors: Da Kuang, Guanwen Qiu, Junhyong Kim,
- Abstract要約: 発達過程を研究するための重要なアプローチは、細胞系統分類と分化史のツリーグラフを推測することである。
本稿では,木グラフ推論に最適化された幾何学特性を持つ埋め込み空間を学習する新しいディープラーニング手法であるCellTreeQMを紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: How a single fertilized cell gives rise to a complex array of specialized cell types in development is a central question in biology. The cells grow, divide, and acquire differentiated characteristics through poorly understood molecular processes. A key approach to studying developmental processes is to infer the tree graph of cell lineage division and differentiation histories, providing an analytical framework for dissecting individual cells' molecular decisions during replication and differentiation. Although genetically engineered lineage-tracing methods have advanced the field, they are either infeasible or ethically constrained in many organisms. In contrast, modern single-cell technologies can measure high-content molecular profiles (e.g., transcriptomes) in a wide range of biological systems. Here, we introduce CellTreeQM, a novel deep learning method based on transformer architectures that learns an embedding space with geometric properties optimized for tree-graph inference. By formulating lineage reconstruction as a tree-metric learning problem, we have systematically explored supervised, weakly supervised, and unsupervised training settings and present a Lineage Reconstruction Benchmark to facilitate comprehensive evaluation of our learning method. We benchmarked the method on (1) synthetic data modeled via Brownian motion with independent noise and spurious signals and (2) lineage-resolved single-cell RNA sequencing datasets. Experimental results show that CellTreeQM recovers lineage structures with minimal supervision and limited data, offering a scalable framework for uncovering cell lineage relationships in challenging animal models. To our knowledge, this is the first method to cast cell lineage inference explicitly as a metric learning task, paving the way for future computational models aimed at uncovering the molecular dynamics of cell lineage.
- Abstract(参考訳): 単一の受精細胞がどのように発達するかは、生物学の中心的な問題である。
細胞は、よく理解されていない分子過程を通じて分化した特性を成長させ、分割し、獲得する。
発達過程を研究するための重要なアプローチは、細胞系統の分裂と分化の歴史のツリーグラフを推測することであり、複製と分化の間の個々の細胞の分子決定を分離するための分析的枠組みを提供する。
遺伝子組み換えの系統追跡法は分野を進歩させたが、多くの生物では実現不可能か倫理的に制約されている。
対照的に、現代の単一細胞技術は、幅広い生物学的システムにおいて、高濃度の分子プロファイル(例えば、トランスクリプトーム)を測定することができる。
本稿では,木グラフ推論に最適化された幾何学特性を持つ埋め込み空間を学習するトランスフォーマーアーキテクチャに基づく新しいディープラーニング手法であるCellTreeQMを紹介する。
系統再構築をツリーメトリック学習問題として定式化することにより,教師付き,弱教師付き,教師なしのトレーニング設定を体系的に検討し,学習方法の総合的な評価を容易にするリニアジ再構成ベンチマークを提案する。
本手法は,(1)ブラウン運動によってモデル化された合成データと,(2)系統分解された単一細胞RNAシークエンシングデータセットについてベンチマークを行った。
実験の結果、CellTreeQMは最小限の監督と限られたデータで系統構造を復元し、課題のある動物モデルにおける細胞系統関係を明らかにするためのスケーラブルなフレームワークを提供することがわかった。
我々の知る限り、これは、細胞系統の分子動力学を明らかにすることを目的とした将来の計算モデルへの道を開いた、メートル法学習タスクとして、細胞系統推定を明示的にキャストする最初の方法である。
関連論文リスト
- GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
本稿では,98k塩基対 (bp) と1.2Bパラメータからなるゲノム基盤モデル GENERator を提案する。
DNAの386Bbpからなる拡張データセットに基づいて、GENERatorは、確立されたベンチマークと新しく提案されたベンチマークの両方で最先端のパフォーマンスを実証する。
また、特に特定のアクティビティプロファイルを持つエンハンサーシーケンスを即応的に生成することで、シーケンス最適化において大きな可能性を秘めている。
論文 参考訳(メタデータ) (2025-02-11T05:39:49Z) - Multi-Modal and Multi-Attribute Generation of Single Cells with CFGen [76.02070962797794]
本研究では、単一セルデータ固有の離散性を保存するフローベースの条件生成モデルであるCellFlow for Generation (CFGen)を紹介する。
CFGenは、全ゲノムマルチモーダル単一セルデータを確実に生成し、重要な生物学的データ特性の回復を改善する。
論文 参考訳(メタデータ) (2024-07-16T14:05:03Z) - Multicell-Fold: geometric learning in folding multicellular life [0.34952465649465553]
細胞群が特定の構造にどのように折り畳むかは、生物がどのように形成されるかを定義する生物学の中心的な問題である。
マルチセルの折り畳みや胚発生を予測できる幾何学的深層学習モデルを提案する。
我々は,4次元形態素配列アライメントの解釈と局所的な細胞再構成の予測という,2つの重要な課題を達成するために,我々のモデルをうまく利用した。
論文 参考訳(メタデータ) (2024-07-09T17:21:49Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Regression-Based Analysis of Multimodal Single-Cell Data Integration
Strategies [0.0]
マルチモーダルシングルセル技術は、個々のセルから多様なデータ型の同時収集を可能にする。
この研究は、Echo State Networksの異常なパフォーマンスを強調し、顕著な相関スコアが0.94である。
これらの発見は、機械学習の可能性を生かして、細胞の分化と機能に関する理解を深めることを約束している。
論文 参考訳(メタデータ) (2023-11-21T16:31:27Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - Learning Causal Representations of Single Cells via Sparse Mechanism
Shift Modeling [3.2435888122704037]
本稿では,各摂動を未知の,しかしスパースな,潜伏変数のサブセットを標的とした介入として扱う単一細胞遺伝子発現データの深部生成モデルを提案する。
これらの手法をシミュレーションした単一セルデータ上でベンチマークし、潜伏単位回復、因果的目標同定、領域外一般化における性能を評価する。
論文 参考訳(メタデータ) (2022-11-07T15:47:40Z) - Topological Data Analysis in Time Series: Temporal Filtration and
Application to Single-Cell Genomics [13.173307471333619]
単細胞トポロジカル単純解析(scTSA)を提案する。
このアプローチを細胞の局所ネットワークから単細胞遺伝子発現プロファイルに適用すると、これまで見つからなかった細胞生態のトポロジーが明らかになる。
38,731細胞,25細胞タイプ,12時間ステップにまたがるゼブラフィッシュ胚発生の単一細胞RNA-seqデータに基づいて,本研究は胃粘膜を最も重要な段階として強調する。
論文 参考訳(メタデータ) (2022-04-29T12:46:14Z) - Interpretable Single-Cell Set Classification with Kernel Mean Embeddings [14.686560033030101]
Kernel Mean Embeddingは、各プロファイルされた生物学的サンプルの細胞景観をエンコードする。
簡単な線形分類器を訓練し、3つのフローおよび質量データセットの最先端の分類精度を実現する。
論文 参考訳(メタデータ) (2022-01-18T21:40:36Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。