A-SCoRe: Attention-based Scene Coordinate Regression for wide-ranging scenarios
- URL: http://arxiv.org/abs/2503.13982v1
- Date: Tue, 18 Mar 2025 07:39:50 GMT
- Title: A-SCoRe: Attention-based Scene Coordinate Regression for wide-ranging scenarios
- Authors: Huy-Hoang Bui, Bach-Thuan Bui, Quang-Vinh Tran, Yasuyuki Fujii, Joo-Ho Lee,
- Abstract summary: A-ScoRe is an Attention-based model which leverage attention on descriptor map level to produce meaningful and high-semantic 2D descriptors.<n>Results show our methods achieve comparable performance with State-of-the-art methods on multiple benchmark while being light-weighted and much more flexible.
- Score: 1.2093553114715083
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Visual localization is considered to be one of the crucial parts in many robotic and vision systems. While state-of-the art methods that relies on feature matching have proven to be accurate for visual localization, its requirements for storage and compute are burdens. Scene coordinate regression (SCR) is an alternative approach that remove the barrier for storage by learning to map 2D pixels to 3D scene coordinates. Most popular SCR use Convolutional Neural Network (CNN) to extract 2D descriptor, which we would argue that it miss the spatial relationship between pixels. Inspired by the success of vision transformer architecture, we present a new SCR architecture, called A-ScoRe, an Attention-based model which leverage attention on descriptor map level to produce meaningful and high-semantic 2D descriptors. Since the operation is performed on descriptor map, our model can work with multiple data modality whether it is a dense or sparse from depth-map, SLAM to Structure-from-Motion (SfM). This versatility allows A-SCoRe to operate in different kind of environments, conditions and achieve the level of flexibility that is important for mobile robots. Results show our methods achieve comparable performance with State-of-the-art methods on multiple benchmark while being light-weighted and much more flexible. Code and pre-trained models are public in our repository: https://github.com/ais-lab/A-SCoRe.
Related papers
- NeuraLoc: Visual Localization in Neural Implicit Map with Dual Complementary Features [50.212836834889146]
We propose an efficient and novel visual localization approach based on the neural implicit map with complementary features.<n>Specifically, to enforce geometric constraints and reduce storage requirements, we implicitly learn a 3D keypoint descriptor field.<n>To further address the semantic ambiguity of descriptors, we introduce additional semantic contextual feature fields.
arXiv Detail & Related papers (2025-03-08T08:04:27Z) - R-SCoRe: Revisiting Scene Coordinate Regression for Robust Large-Scale Visual Localization [66.87005863868181]
We introduce a covisibility graph-based global encoding learning and data augmentation strategy.<n>We revisit the network architecture and local feature extraction module.<n>Our method achieves state-of-the-art on challenging large-scale datasets without relying on network ensembles or 3D supervision.
arXiv Detail & Related papers (2025-01-02T18:59:08Z) - SIGMA:Sinkhorn-Guided Masked Video Modeling [69.31715194419091]
Sinkhorn-guided Masked Video Modelling ( SIGMA) is a novel video pretraining method.
We distribute features of space-time tubes evenly across a limited number of learnable clusters.
Experimental results on ten datasets validate the effectiveness of SIGMA in learning more performant, temporally-aware, and robust video representations.
arXiv Detail & Related papers (2024-07-22T08:04:09Z) - GLACE: Global Local Accelerated Coordinate Encoding [66.87005863868181]
Scene coordinate regression methods are effective in small-scale scenes but face significant challenges in large-scale scenes.
We propose GLACE, which integrates pre-trained global and local encodings and enables SCR to scale to large scenes with only a single small-sized network.
Our method achieves state-of-the-art results on large-scale scenes with a low-map-size model.
arXiv Detail & Related papers (2024-06-06T17:59:50Z) - Leveraging Neural Radiance Field in Descriptor Synthesis for Keypoints Scene Coordinate Regression [1.2974519529978974]
This paper introduces a pipeline for keypoint descriptor synthesis using Neural Radiance Field (NeRF)
generating novel poses and feeding them into a trained NeRF model to create new views, our approach enhances the KSCR's capabilities in data-scarce environments.
The proposed system could significantly improve localization accuracy by up to 50% and cost only a fraction of time for data synthesis.
arXiv Detail & Related papers (2024-03-15T13:40:37Z) - Improved Scene Landmark Detection for Camera Localization [11.56648898250606]
Method based on scene landmark detection (SLD) was recently proposed to address these limitations.
It involves training a convolutional neural network (CNN) to detect a few predetermined, salient, scene-specific 3D points or landmarks.
We show that the accuracy gap was due to insufficient model capacity and noisy labels during training.
arXiv Detail & Related papers (2024-01-31T18:59:12Z) - D2S: Representing sparse descriptors and 3D coordinates for camera relocalization [1.2974519529978974]
We propose a learning-based approach to represent complex local descriptors and their scene coordinates.
Our method is characterized by its simplicity and cost-effectiveness.
Our approach outperforms the previous regression-based methods in both indoor and outdoor environments.
arXiv Detail & Related papers (2023-07-28T01:20:12Z) - SACReg: Scene-Agnostic Coordinate Regression for Visual Localization [16.866303169903237]
We propose a generalized SCR model trained once in new test scenes, regardless of their scale, without any finetuning.
Instead of encoding the scene coordinates into the network weights, our model takes as input a database image with some sparse 2D pixel to 3D coordinate annotations.
We show that the database representation of images and their 2D-3D annotations can be highly compressed with negligible loss of localization performance.
arXiv Detail & Related papers (2023-07-21T16:56:36Z) - SeMLaPS: Real-time Semantic Mapping with Latent Prior Networks and
Quasi-Planar Segmentation [53.83313235792596]
We present a new methodology for real-time semantic mapping from RGB-D sequences.
It combines a 2D neural network and a 3D network based on a SLAM system with 3D occupancy mapping.
Our system achieves state-of-the-art semantic mapping quality within 2D-3D networks-based systems.
arXiv Detail & Related papers (2023-06-28T22:36:44Z) - HSCNet++: Hierarchical Scene Coordinate Classification and Regression
for Visual Localization with Transformer [23.920690073252636]
We present a new hierarchical scene coordinate network to predict pixel scene coordinates in a coarse-to-fine manner from a single RGB image.
The proposed method, which is an extension of HSCNet, allows us to train compact models which scale robustly to large environments.
arXiv Detail & Related papers (2023-05-05T15:00:14Z) - Neural Implicit Dense Semantic SLAM [83.04331351572277]
We propose a novel RGBD vSLAM algorithm that learns a memory-efficient, dense 3D geometry, and semantic segmentation of an indoor scene in an online manner.
Our pipeline combines classical 3D vision-based tracking and loop closing with neural fields-based mapping.
Our proposed algorithm can greatly enhance scene perception and assist with a range of robot control problems.
arXiv Detail & Related papers (2023-04-27T23:03:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.