Boosting Semi-Supervised Medical Image Segmentation via Masked Image Consistency and Discrepancy Learning
- URL: http://arxiv.org/abs/2503.14013v1
- Date: Tue, 18 Mar 2025 08:20:35 GMT
- Title: Boosting Semi-Supervised Medical Image Segmentation via Masked Image Consistency and Discrepancy Learning
- Authors: Pengcheng Zhou, Lantian Zhang, Wei Li,
- Abstract summary: We propose the Masked Image Consistency and Discrepancy Learning (MICD) framework with three key modules.<n>The Cross Feature Consistency (CFC) module fortifies information exchange and model robustness.<n>The Cross Model Discrepancy (CMD) module utilizes EMA teacher networks to oversee outputs and preserve branch diversity.
- Score: 2.5355185243767986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised learning is of great significance in medical image segmentation by exploiting unlabeled data. Among its strategies, the co-training framework is prominent. However, previous co-training studies predominantly concentrate on network initialization variances and pseudo-label generation, while overlooking the equilibrium between information interchange and model diversity preservation. In this paper, we propose the Masked Image Consistency and Discrepancy Learning (MICD) framework with three key modules. The Masked Cross Pseudo Consistency (MCPC) module enriches context perception and small sample learning via pseudo-labeling across masked-input branches. The Cross Feature Consistency (CFC) module fortifies information exchange and model robustness by ensuring decoder feature consistency. The Cross Model Discrepancy (CMD) module utilizes EMA teacher networks to oversee outputs and preserve branch diversity. Together, these modules address existing limitations by focusing on fine-grained local information and maintaining diversity in a heterogeneous framework. Experiments on two public medical image datasets, AMOS and Synapse, demonstrate that our approach outperforms state-of-the-art methods.
Related papers
- SMILENet: Unleashing Extra-Large Capacity Image Steganography via a Synergistic Mosaic InvertibLE Hiding Network [71.11351750072936]
We propose a novel synergistic framework that achieves 25 image hiding through three key innovations.
A network architecture coordinates reversible and non-reversible operations to efficiently exploit information redundancy in both secret and cover images.
A unified training strategy that coordinates complementary modules to achieve 3.0x higher capacity than existing methods with superior visual quality.
arXiv Detail & Related papers (2025-03-07T03:31:47Z) - Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention [59.19580789952102]
This paper proposes a novel semi-supervised Multi-Scale Uncertainty and Cross-Teacher-Student Attention (MUCA) model for RS image semantic segmentation tasks.<n>MUCA constrains the consistency among feature maps at different layers of the network by introducing a multi-scale uncertainty consistency regularization.<n>MUCA utilizes a Cross-Teacher-Student attention mechanism to guide the student network, guiding the student network to construct more discriminative feature representations.
arXiv Detail & Related papers (2025-01-18T11:57:20Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - Cross-model Mutual Learning for Exemplar-based Medical Image Segmentation [25.874281336821685]
Cross-model Mutual learning framework for Exemplar-based Medical image (CMEMS)
We introduce a novel Cross-model Mutual learning framework for Exemplar-based Medical image (CMEMS)
arXiv Detail & Related papers (2024-04-18T00:18:07Z) - Semi-supervised Medical Image Segmentation Method Based on Cross-pseudo
Labeling Leveraging Strong and Weak Data Augmentation Strategies [2.8246591681333024]
This paper proposes a semi-supervised model, DFCPS, which innovatively incorporates the Fixmatch concept.
Cross-pseudo-supervision is introduced, integrating consistency learning with self-training.
Our model consistently exhibits superior performance across all four subdivisions containing different proportions of unlabeled data.
arXiv Detail & Related papers (2024-02-17T13:07:44Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - SMC-NCA: Semantic-guided Multi-level Contrast for Semi-supervised Temporal Action Segmentation [53.010417880335424]
Semi-supervised temporal action segmentation (SS-TA) aims to perform frame-wise classification in long untrimmed videos.
Recent studies have shown the potential of contrastive learning in unsupervised representation learning using unlabelled data.
We propose a novel Semantic-guided Multi-level Contrast scheme with a Neighbourhood-Consistency-Aware unit (SMC-NCA) to extract strong frame-wise representations.
arXiv Detail & Related papers (2023-12-19T17:26:44Z) - Self-supervised Semantic Segmentation: Consistency over Transformation [3.485615723221064]
We propose a novel self-supervised algorithm, textbfS$3$-Net, which integrates a robust framework based on the proposed Inception Large Kernel Attention (I-LKA) modules.
We leverage deformable convolution as an integral component to effectively capture and delineate lesion deformations for superior object boundary definition.
Our experimental results on skin lesion and lung organ segmentation tasks show the superior performance of our method compared to the SOTA approaches.
arXiv Detail & Related papers (2023-08-31T21:28:46Z) - Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
We develop a novel Multi-Scale Cross Supervised Contrastive Learning framework to segment structures in medical images.
Our approach contrasts multi-scale features based on ground-truth and cross-predicted labels, in order to extract robust feature representations.
It outperforms state-of-the-art semi-supervised methods by more than 3.0% in Dice.
arXiv Detail & Related papers (2023-06-25T16:55:32Z) - Continual Vision-Language Representation Learning with Off-Diagonal
Information [112.39419069447902]
Multi-modal contrastive learning frameworks like CLIP typically require a large amount of image-text samples for training.
This paper discusses the feasibility of continual CLIP training using streaming data.
arXiv Detail & Related papers (2023-05-11T08:04:46Z) - MSCDA: Multi-level Semantic-guided Contrast Improves Unsupervised Domain
Adaptation for Breast MRI Segmentation in Small Datasets [5.272836235045653]
We propose a novel Multi-level Semantic-guided Contrastive Domain Adaptation framework.
Our approach incorporates self-training with contrastive learning to align feature representations between domains.
In particular, we extend the contrastive loss by incorporating pixel-to-pixel, pixel-to-centroid, and centroid-to-centroid contrasts.
arXiv Detail & Related papers (2023-01-04T19:16:55Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.