Semi-supervised Medical Image Segmentation Method Based on Cross-pseudo
Labeling Leveraging Strong and Weak Data Augmentation Strategies
- URL: http://arxiv.org/abs/2402.11273v1
- Date: Sat, 17 Feb 2024 13:07:44 GMT
- Title: Semi-supervised Medical Image Segmentation Method Based on Cross-pseudo
Labeling Leveraging Strong and Weak Data Augmentation Strategies
- Authors: Yifei Chen, Chenyan Zhang, Yifan Ke, Yiyu Huang, Xuezhou Dai, Feiwei
Qin, Yongquan Zhang, Xiaodong Zhang, Changmiao Wang
- Abstract summary: This paper proposes a semi-supervised model, DFCPS, which innovatively incorporates the Fixmatch concept.
Cross-pseudo-supervision is introduced, integrating consistency learning with self-training.
Our model consistently exhibits superior performance across all four subdivisions containing different proportions of unlabeled data.
- Score: 2.8246591681333024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional supervised learning methods have historically encountered certain
constraints in medical image segmentation due to the challenging collection
process, high labeling cost, low signal-to-noise ratio, and complex features
characterizing biomedical images. This paper proposes a semi-supervised model,
DFCPS, which innovatively incorporates the Fixmatch concept. This significantly
enhances the model's performance and generalizability through data augmentation
processing, employing varied strategies for unlabeled data. Concurrently, the
model design gives appropriate emphasis to the generation, filtration, and
refinement processes of pseudo-labels. The novel concept of
cross-pseudo-supervision is introduced, integrating consistency learning with
self-training. This enables the model to fully leverage pseudo-labels from
multiple perspectives, thereby enhancing training diversity. The DFCPS model is
compared with both baseline and advanced models using the publicly accessible
Kvasir-SEG dataset. Across all four subdivisions containing different
proportions of unlabeled data, our model consistently exhibits superior
performance. Our source code is available at
https://github.com/JustlfC03/DFCPS.
Related papers
- Continuous Contrastive Learning for Long-Tailed Semi-Supervised Recognition [50.61991746981703]
Current state-of-the-art LTSSL approaches rely on high-quality pseudo-labels for large-scale unlabeled data.
This paper introduces a novel probabilistic framework that unifies various recent proposals in long-tail learning.
We introduce a continuous contrastive learning method, CCL, extending our framework to unlabeled data using reliable and smoothed pseudo-labels.
arXiv Detail & Related papers (2024-10-08T15:06:10Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - Cross Prompting Consistency with Segment Anything Model for Semi-supervised Medical Image Segmentation [44.54301473673582]
Semi-supervised learning (SSL) has achieved notable progress in medical image segmentation.
Recent developments in visual foundation models, such as the Segment Anything Model (SAM), have demonstrated remarkable adaptability.
We propose a cross-prompting consistency method with segment anything model (CPC-SAM) for semi-supervised medical image segmentation.
arXiv Detail & Related papers (2024-07-07T15:43:20Z) - Cross-model Mutual Learning for Exemplar-based Medical Image Segmentation [25.874281336821685]
Cross-model Mutual learning framework for Exemplar-based Medical image (CMEMS)
We introduce a novel Cross-model Mutual learning framework for Exemplar-based Medical image (CMEMS)
arXiv Detail & Related papers (2024-04-18T00:18:07Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Correlation-Aware Mutual Learning for Semi-supervised Medical Image
Segmentation [5.045813144375637]
Most existing semi-supervised segmentation methods only focus on extracting information from unlabeled data.
We propose a novel Correlation Aware Mutual Learning framework that leverages labeled data to guide the extraction of information from unlabeled data.
Our approach is based on a mutual learning strategy that incorporates two modules: the Cross-sample Mutual Attention Module (CMA) and the Omni-Correlation Consistency Module (OCC)
arXiv Detail & Related papers (2023-07-12T17:20:05Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Optimizing the Procedure of CT Segmentation Labeling [1.2891210250935146]
In Computed Tomography, machine learning is often used for automated data processing.
We consider the annotation procedure and its effect on the model performance.
We assume three main virtues of a good dataset collected for a model training to be label quality, diversity, and completeness.
arXiv Detail & Related papers (2023-03-24T15:52:42Z) - Enforcing Mutual Consistency of Hard Regions for Semi-supervised Medical
Image Segmentation [68.9233942579956]
We propose a novel mutual consistency network (MC-Net+) to exploit the unlabeled hard regions for semi-supervised medical image segmentation.
The MC-Net+ model is motivated by the observation that deep models trained with limited annotations are prone to output highly uncertain and easily mis-classified predictions.
We compare the segmentation results of the MC-Net+ with five state-of-the-art semi-supervised approaches on three public medical datasets.
arXiv Detail & Related papers (2021-09-21T04:47:42Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.