論文の概要: Learning on LLM Output Signatures for gray-box LLM Behavior Analysis
- arxiv url: http://arxiv.org/abs/2503.14043v1
- Date: Tue, 18 Mar 2025 09:04:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:15:08.886848
- Title: Learning on LLM Output Signatures for gray-box LLM Behavior Analysis
- Title(参考訳): グレーボックスLDM挙動解析のためのLCM出力信号の学習
- Authors: Guy Bar-Shalom, Fabrizio Frasca, Derek Lim, Yoav Gelberg, Yftah Ziser, Ran El-Yaniv, Gal Chechik, Haggai Maron,
- Abstract要約: 大きな言語モデル(LLM)は広く採用されていますが、その振る舞いに対する私たちの理解は限定的です。
我々は,既存の手法の近似を理論的に保証するプロセスに対して,トランスフォーマーに基づくアプローチを開発する。
提案手法は,グレーボックス設定における幻覚およびデータ汚染検出における優れた性能を実現する。
- 参考スコア(独自算出の注目度): 52.81120759532526
- License:
- Abstract: Large Language Models (LLMs) have achieved widespread adoption, yet our understanding of their behavior remains limited, particularly in detecting data contamination and hallucinations. While recently proposed probing techniques provide insights through activation analysis, they require "white-box" access to model internals, often unavailable. Current "gray-box" approaches typically analyze only the probability of the actual tokens in the sequence with simple task-specific heuristics. Importantly, these methods overlook the rich information contained in the full token distribution at each processing step. To address these limitations, we propose that gray-box analysis should leverage the complete observable output of LLMs, consisting of both the previously used token probabilities as well as the complete token distribution sequences - a unified data type we term LOS (LLM Output Signature). To this end, we develop a transformer-based approach to process LOS that theoretically guarantees approximation of existing techniques while enabling more nuanced analysis. Our approach achieves superior performance on hallucination and data contamination detection in gray-box settings, significantly outperforming existing baselines. Furthermore, it demonstrates strong transfer capabilities across datasets and LLMs, suggesting that LOS captures fundamental patterns in LLM behavior. Our code is available at: https://github.com/BarSGuy/LLM-Output-Signatures-Network.
- Abstract(参考訳): 大規模言語モデル(LLM)は広く採用されているが,データ汚染や幻覚の検出において,その行動に対する理解は限られている。
最近提案されたプローブ技術は、アクティベーション分析を通じて洞察を提供するが、しばしば利用できないモデル内部への"ホワイトボックス"アクセスを必要とする。
現在の "gray-box" アプローチは、通常、単純なタスク固有のヒューリスティックスを用いて、シーケンス内の実際のトークンの確率のみを分析する。
重要な点として、これらの手法は各処理ステップにおける全トークン分布に含まれる豊富な情報を見落としている。
これらの制約に対処するため, グレーボックス解析では, LOS (LLM Output Signature, LLM Output Signature, LLM Output Signature, LLM Output Signature) と呼ぶ, 既使用トークンの確率と完全トークン分布シーケンスの両方から, LLMの完全な可観測出力を利用するべきである。
そこで我々は,従来の手法の近似を理論的に保証し,より微妙な解析を可能にした。
提案手法は,グレーボックス設定における幻覚およびデータ汚染検出における優れた性能を実現し,既存のベースラインを著しく上回る。
さらに、データセットとLLM間の強力な転送機能を示し、LOSがLLMの振る舞いの基本的なパターンをキャプチャしていることを示唆している。
私たちのコードは、https://github.com/BarSGuy/LLM-Output-Signatures-Networkで利用可能です。
関連論文リスト
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
LLM-Lassoは大規模言語モデル(LLM)を利用してラッソ回帰における特徴選択を導くフレームワークである。
LLMは各特徴に対してペナルティ因子を生成し、単純でチューニング可能なモデルを用いてラスソペナルティの重みに変換される。
LLMによりより関連づけられた特徴は、より低い罰を受け、最終モデルに保持される可能性を高める。
論文 参考訳(メタデータ) (2025-02-15T02:55:22Z) - A Comprehensive Analysis on LLM-based Node Classification Algorithms [21.120619437937382]
我々はLarge Language Models (LLMs) を用いたノード分類のための包括的でテストベッドを開発する。
10のデータセット、8つのLLMベースのアルゴリズム、3つの学習パラダイムを含み、新しいメソッドとデータセットで簡単に拡張できるように設計されている。
パフォーマンスに影響を与える重要な設定を決定するために、広範な実験、トレーニング、および2200以上のモデルの評価を行います。
その結果, LLM法は半教師付き環境で従来の手法を著しく上回り, その利点は教師付き環境ではごくわずかである,という8つの知見が得られた。
論文 参考訳(メタデータ) (2025-02-02T15:56:05Z) - Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings [69.35226485836641]
既存のMultimoal Large Language Models (MLLM) における視覚トークンの過剰使用は、しばしば明らかな冗長性を示し、非常に高価な計算をもたらす。
DyVTE(Dynamic visual-token exit)と呼ばれるMLLMの効率を改善するための簡易かつ効果的な手法を提案する。
DyVTEは軽量なハイパーネットワークを使用して、テキストトークンの状態を認識し、特定のレイヤの後にすべてのビジュアルトークンを削除する。
論文 参考訳(メタデータ) (2024-11-29T11:24:23Z) - Breaking the Ceiling of the LLM Community by Treating Token Generation as a Classification for Ensembling [3.873482175367558]
本稿では,Large Language Model (LLM) による各トークンの生成を,アンサンブルのための分類(GaC)として扱う。
実験では、試験、数学、推論などいくつかのベンチマークで最先端のLCMをアンサンブルし、我々の手法が既存のコミュニティのパフォーマンスを損なうことを観察する。
論文 参考訳(メタデータ) (2024-06-18T13:17:26Z) - Evaluating the Generalization Ability of Quantized LLMs: Benchmark, Analysis, and Toolbox [46.39670209441478]
大規模言語モデル(LLM)は、複数のシナリオでエキサイティングな進歩を見せている。
メモリフットプリントと推論コストを削減する効果的な方法として、量子化は低ビット幅での性能劣化にも直面する。
この研究は、評価システム、詳細な分析、一般的なツールボックスを含む、この研究トピックのための包括的なベンチマークスイートを提供する。
論文 参考訳(メタデータ) (2024-06-15T12:02:14Z) - DALD: Improving Logits-based Detector without Logits from Black-box LLMs [56.234109491884126]
大規模言語モデル(LLM)はテキスト生成に革命をもたらし、人間の文章を忠実に模倣する出力を生成する。
我々は、ブラックボックステキスト検出における最先端性能を再定義する革新的なフレームワークであるDLD(Dis Distribution-Aligned LLMs Detection)を提案する。
DALDは、サロゲートモデルの分布を未知の目標LLMの分布と整合させ、高速モデルの反復に対する検出能力とレジリエンスを向上するように設計されている。
論文 参考訳(メタデータ) (2024-06-07T19:38:05Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - Tokenization Matters! Degrading Large Language Models through Challenging Their Tokenization [12.885866125783618]
大規模言語モデル(LLM)は、特定のクエリに対する不正確な応答を生成する傾向がある。
我々は, LLMのトークン化に挑戦するために, $textbfADT (TokenizerのAdrial dataset)$という逆データセットを構築した。
GPT-4o, Llama-3, Qwen2.5-maxなど, 先進LLMのトークン化に挑戦する上で, 当社のADTは極めて有効であることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-27T11:39:59Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。