Foundation Feature-Driven Online End-Effector Pose Estimation: A Marker-Free and Learning-Free Approach
- URL: http://arxiv.org/abs/2503.14051v1
- Date: Tue, 18 Mar 2025 09:12:49 GMT
- Title: Foundation Feature-Driven Online End-Effector Pose Estimation: A Marker-Free and Learning-Free Approach
- Authors: Tianshu Wu, Jiyao Zhang, Shiqian Liang, Zhengxiao Han, Hao Dong,
- Abstract summary: This work proposes a feature-driven online End-Effect-or Pose Estimation algorithm.<n>It generalizes across robots and end-effectors in a training-free manner.<n>Experiments demonstrate its superior flexibility, generalization, and performance.
- Score: 4.132336580197184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate transformation estimation between camera space and robot space is essential. Traditional methods using markers for hand-eye calibration require offline image collection, limiting their suitability for online self-calibration. Recent learning-based robot pose estimation methods, while advancing online calibration, struggle with cross-robot generalization and require the robot to be fully visible. This work proposes a Foundation feature-driven online End-Effector Pose Estimation (FEEPE) algorithm, characterized by its training-free and cross end-effector generalization capabilities. Inspired by the zero-shot generalization capabilities of foundation models, FEEPE leverages pre-trained visual features to estimate 2D-3D correspondences derived from the CAD model and target image, enabling 6D pose estimation via the PnP algorithm. To resolve ambiguities from partial observations and symmetry, a multi-historical key frame enhanced pose optimization algorithm is introduced, utilizing temporal information for improved accuracy. Compared to traditional hand-eye calibration, FEEPE enables marker-free online calibration. Unlike robot pose estimation, it generalizes across robots and end-effectors in a training-free manner. Extensive experiments demonstrate its superior flexibility, generalization, and performance.
Related papers
- ARC-Calib: Autonomous Markerless Camera-to-Robot Calibration via Exploratory Robot Motions [15.004750210002152]
ARC-Calib is a model-based markerless camera-to-robot calibration framework.
It is fully autonomous and generalizable across diverse robots.
arXiv Detail & Related papers (2025-03-18T20:03:32Z) - Kalib: Markerless Hand-Eye Calibration with Keypoint Tracking [52.4190876409222]
Hand-eye calibration involves estimating the transformation between the camera and the robot.
Recent advancements in deep learning offer markerless techniques, but they present challenges.
We propose Kalib, an automatic and universal markerless hand-eye calibration pipeline.
arXiv Detail & Related papers (2024-08-20T06:03:40Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
We introduce a novel methodology that extends Pose Graph Optimization techniques.
We consider the bipartite graph encompassing cameras, object poses evolving dynamically, and camera-object relative transformations at each time step.
Our framework retains compatibility with traditional PGO solvers, but its efficacy benefits from a custom-tailored optimization scheme.
arXiv Detail & Related papers (2024-03-25T17:47:03Z) - EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
We introduce a new approach to hand-eye calibration called EasyHeC, which is markerless, white-box, and delivers superior accuracy and robustness.
We propose to use two key technologies: differentiable rendering-based camera pose optimization and consistency-based joint space exploration.
Our evaluation demonstrates superior performance in synthetic and real-world datasets.
arXiv Detail & Related papers (2023-05-02T03:49:54Z) - Markerless Camera-to-Robot Pose Estimation via Self-supervised
Sim-to-Real Transfer [26.21320177775571]
We propose an end-to-end pose estimation framework that is capable of online camera-to-robot calibration and a self-supervised training method.
Our framework combines deep learning and geometric vision for solving the robot pose, and the pipeline is fully differentiable.
arXiv Detail & Related papers (2023-02-28T05:55:42Z) - Learning Markerless Robot-Depth Camera Calibration and End-Effector Pose
Estimation [0.0]
We present a learning-based markerless extrinsic calibration system that uses a depth camera and does not rely on simulation data.
We learn models for end-effector (EE) segmentation, single-frame rotation prediction and keypoint detection, from automatically generated real-world data.
Our robustness with training data from multiple camera poses and test data from previously unseen poses give sub-centimeter evaluations and sub-deciradian average calibration and pose estimation errors.
arXiv Detail & Related papers (2022-12-15T00:53:42Z) - GDRNPP: A Geometry-guided and Fully Learning-based Object Pose Estimator [51.89441403642665]
6D pose estimation of rigid objects is a long-standing and challenging task in computer vision.<n>Recently, the emergence of deep learning reveals the potential of Convolutional Neural Networks (CNNs) to predict reliable 6D poses.<n>This paper introduces a fully learning-based object pose estimator.
arXiv Detail & Related papers (2021-02-24T09:11:31Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
The work was implemented in a simulation environment, using the 7DoF arm of the iCub robot simulator.
A cost-sensitive active learning approach is used to select optimal joint configurations.
The results show cost-sensitive active learning has similar accuracy to the standard active learning approach, while reducing in about half the executed movement.
arXiv Detail & Related papers (2021-01-26T16:01:02Z) - Nothing But Geometric Constraints: A Model-Free Method for Articulated
Object Pose Estimation [89.82169646672872]
We propose an unsupervised vision-based system to estimate the joint configurations of the robot arm from a sequence of RGB or RGB-D images without knowing the model a priori.
We combine a classical geometric formulation with deep learning and extend the use of epipolar multi-rigid-body constraints to solve this task.
arXiv Detail & Related papers (2020-11-30T20:46:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.