Nothing But Geometric Constraints: A Model-Free Method for Articulated
Object Pose Estimation
- URL: http://arxiv.org/abs/2012.00088v1
- Date: Mon, 30 Nov 2020 20:46:48 GMT
- Title: Nothing But Geometric Constraints: A Model-Free Method for Articulated
Object Pose Estimation
- Authors: Qihao Liu, Weichao Qiu, Weiyao Wang, Gregory D. Hager, Alan L. Yuille
- Abstract summary: We propose an unsupervised vision-based system to estimate the joint configurations of the robot arm from a sequence of RGB or RGB-D images without knowing the model a priori.
We combine a classical geometric formulation with deep learning and extend the use of epipolar multi-rigid-body constraints to solve this task.
- Score: 89.82169646672872
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an unsupervised vision-based system to estimate the joint
configurations of the robot arm from a sequence of RGB or RGB-D images without
knowing the model a priori, and then adapt it to the task of
category-independent articulated object pose estimation. We combine a classical
geometric formulation with deep learning and extend the use of epipolar
constraint to multi-rigid-body systems to solve this task. Given a video
sequence, the optical flow is estimated to get the pixel-wise dense
correspondences. After that, the 6D pose is computed by a modified PnP
algorithm. The key idea is to leverage the geometric constraints and the
constraint between multiple frames. Furthermore, we build a synthetic dataset
with different kinds of robots and multi-joint articulated objects for the
research of vision-based robot control and robotic vision. We demonstrate the
effectiveness of our method on three benchmark datasets and show that our
method achieves higher accuracy than the state-of-the-art supervised methods in
estimating joint angles of robot arms and articulated objects.
Related papers
- 3D Foundation Models Enable Simultaneous Geometry and Pose Estimation of Grasped Objects [13.58353565350936]
We contribute methodology to jointly estimate the geometry and pose of objects grasped by a robot.
Our method transforms the estimated geometry into the robot's coordinate frame.
We empirically evaluate our approach on a robot manipulator holding a diverse set of real-world objects.
arXiv Detail & Related papers (2024-07-14T21:02:55Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
We build the first unified multi-modal 3D object detection benchmark MM- Omni3D and extend the aforementioned monocular detector to its multi-modal version.
We name the designed monocular and multi-modal detectors as UniMODE and MM-UniMODE, respectively.
arXiv Detail & Related papers (2024-02-28T18:59:31Z) - Geometric-aware Pretraining for Vision-centric 3D Object Detection [77.7979088689944]
We propose a novel geometric-aware pretraining framework called GAPretrain.
GAPretrain serves as a plug-and-play solution that can be flexibly applied to multiple state-of-the-art detectors.
We achieve 46.2 mAP and 55.5 NDS on the nuScenes val set using the BEVFormer method, with a gain of 2.7 and 2.1 points, respectively.
arXiv Detail & Related papers (2023-04-06T14:33:05Z) - A Distance-Geometric Method for Recovering Robot Joint Angles From an
RGB Image [7.971699294672282]
We present a novel method for retrieving the joint angles of a robot manipulator using only a single RGB image of its current configuration.
Our approach, based on a distance-geometric representation of the configuration space, exploits the knowledge of a robot's kinematic model.
arXiv Detail & Related papers (2023-01-05T12:57:45Z) - Uncertainty Guided Policy for Active Robotic 3D Reconstruction using
Neural Radiance Fields [82.21033337949757]
This paper introduces a ray-based volumetric uncertainty estimator, which computes the entropy of the weight distribution of the color samples along each ray of the object's implicit neural representation.
We show that it is possible to infer the uncertainty of the underlying 3D geometry given a novel view with the proposed estimator.
We present a next-best-view selection policy guided by the ray-based volumetric uncertainty in neural radiance fields-based representations.
arXiv Detail & Related papers (2022-09-17T21:28:57Z) - SDFEst: Categorical Pose and Shape Estimation of Objects from RGB-D
using Signed Distance Fields [5.71097144710995]
We present a modular pipeline for pose and shape estimation of objects from RGB-D images.
We integrate a generative shape model with a novel network to enable 6D pose and shape estimation from a single or multiple views.
We demonstrate the benefits of our approach over state-of-the-art methods in several experiments on both synthetic and real data.
arXiv Detail & Related papers (2022-07-11T13:53:50Z) - 6-DoF Pose Estimation of Household Objects for Robotic Manipulation: An
Accessible Dataset and Benchmark [17.493403705281008]
We present a new dataset for 6-DoF pose estimation of known objects, with a focus on robotic manipulation research.
We provide 3D scanned textured models of toy grocery objects, as well as RGBD images of the objects in challenging, cluttered scenes.
Using semi-automated RGBD-to-model texture correspondences, the images are annotated with ground truth poses that were verified empirically to be accurate to within a few millimeters.
We also propose a new pose evaluation metric called ADD-H based upon the Hungarian assignment algorithm that is robust to symmetries in object geometry without requiring their explicit enumeration.
arXiv Detail & Related papers (2022-03-11T01:19:04Z) - DONet: Learning Category-Level 6D Object Pose and Size Estimation from
Depth Observation [53.55300278592281]
We propose a method of Category-level 6D Object Pose and Size Estimation (COPSE) from a single depth image.
Our framework makes inferences based on the rich geometric information of the object in the depth channel alone.
Our framework competes with state-of-the-art approaches that require labeled real-world images.
arXiv Detail & Related papers (2021-06-27T10:41:50Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - MoreFusion: Multi-object Reasoning for 6D Pose Estimation from
Volumetric Fusion [19.034317851914725]
We present a system which can estimate the accurate poses of multiple known objects in contact and occlusion from real-time, embodied multi-view vision.
Our approach makes 3D object pose proposals from single RGB-D views, accumulates pose estimates and non-parametric occupancy information from multiple views as the camera moves.
We verify the accuracy and robustness of our approach experimentally on 2 object datasets: YCB-Video, and our own challenging Cluttered YCB-Video.
arXiv Detail & Related papers (2020-04-09T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.