論文の概要: Semantic Communication in Dynamic Channel Scenarios: Collaborative Optimization of Dual-Pipeline Joint Source-Channel Coding and Personalized Federated Learning
- arxiv url: http://arxiv.org/abs/2503.14084v1
- Date: Tue, 18 Mar 2025 10:02:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:14:19.364178
- Title: Semantic Communication in Dynamic Channel Scenarios: Collaborative Optimization of Dual-Pipeline Joint Source-Channel Coding and Personalized Federated Learning
- Title(参考訳): 動的チャネルシナリオにおけるセマンティックコミュニケーション:デュアルパイプ連成音源-チャネル符号化と個人化フェデレーション学習の協調最適化
- Authors: Xingrun Yan, Shiyuan Zuo, Yifeng Lyu, Rongfei Fan, Han Hu,
- Abstract要約: 複数のユーザを持つ複雑なネットワークトポロジでは、クライアントデータとチャネル状態情報(CSI)の組み合わせは、既存のセマンティック通信モデルに重大な課題をもたらす。
本稿では,チャネル認識モデルに基づくパーソナライズド・セマンティック・コミュニケーション・モデルを提案する。
本研究では,非帯域幅ロス関数の最適化ギャップをゼロにするフレームワークを提案する。
- 参考スコア(独自算出の注目度): 11.830276582141096
- License:
- Abstract: Semantic communication is designed to tackle issues like bandwidth constraints and high latency in communication systems. However, in complex network topologies with multiple users, the enormous combinations of client data and channel state information (CSI) pose significant challenges for existing semantic communication architectures. To improve the generalization ability of semantic communication models in complex scenarios while meeting the personalized needs of each user in their local environments, we propose a novel personalized federated learning framework with dual-pipeline joint source-channel coding based on channel awareness model (PFL-DPJSCCA). Within this framework, we present a method that achieves zero optimization gap for non-convex loss functions. Experiments conducted under varying SNR distributions validate the outstanding performance of our framework across diverse datasets.
- Abstract(参考訳): セマンティック通信は、通信システムにおける帯域制限や高いレイテンシといった問題に対処するために設計されている。
しかし、複数のユーザとの複雑なネットワークトポロジでは、クライアントデータとチャネル状態情報(CSI)の膨大な組み合わせが、既存のセマンティック通信アーキテクチャに重大な課題をもたらしている。
本研究では, チャネル認識モデル(PFL-DPJSCCA)をベースとした, 複合シナリオにおけるセマンティック・コミュニケーションモデルの一般化能力を向上させるために, チャネル認識モデル(PFL-DPJSCCA)をベースとした, デュアルパイプ・ジョイント・ソース・チャネル・コーディングを用いた, パーソナライズド・フェデレーション・ラーニング・フレームワークを提案する。
本研究では,非凸損失関数の最適化ギャップをゼロにする手法を提案する。
種々のSNR分布下で行った実験は、多種多様なデータセットにわたるフレームワークの優れた性能を検証した。
関連論文リスト
- Take What You Need: Flexible Multi-Task Semantic Communications with Channel Adaptation [51.53221300103261]
本稿では,マスク付きオートエンコーダアーキテクチャに基づく,チャネル適応型・マルチタスク対応のセマンティックコミュニケーションフレームワークについて紹介する。
チャネル認識抽出器を用いて、リアルタイムのチャネル条件に応じて、関連情報を動的に選択する。
画像再構成や物体検出などのタスクにおける従来の手法と比較して,本手法の優れた性能を示す実験結果が得られた。
論文 参考訳(メタデータ) (2025-02-12T09:01:25Z) - FedRSClip: Federated Learning for Remote Sensing Scene Classification Using Vision-Language Models [23.830133838392964]
本稿では,VLM,特にCLIPに基づくリモートセンシング画像分類のための最初のフェデレーション学習フレームワークであるFedRSCLIPを提案する。
FedRSCLIPは、Prompt Learningを導入することで、フェデレーション環境におけるデータ不均一性と大規模モデル伝送の課題に対処する。
提案モデルの有効性を検証するため,既存の3つのリモートセンシング画像分類データセットに基づいてFed-RSICデータセットを構築した。
論文 参考訳(メタデータ) (2025-01-05T07:10:27Z) - FSSC: Federated Learning of Transformer Neural Networks for Semantic Image Communication [27.79514340995533]
マルチユーザ配置シナリオにおける画像意味コミュニケーションの問題に対処する。
本研究では,Swin Transformer を用いた意味コミュニケーションシステムのためのフェデレートラーニング(FL)戦略を提案する。
論文 参考訳(メタデータ) (2024-07-31T10:25:24Z) - Communication-Efficient Personalized Federated Learning for Speech-to-Text Tasks [64.02867484165476]
プライバシー保護と法的規制を満たすために、連邦学習(FL)は、音声テキスト(S2T)システムのトレーニングにおいて大きな注目を集めている。
S2Tタスクで一般的に使用されるFLアプローチ(textscFedAvg)は、通常、広範な通信オーバーヘッドに悩まされる。
我々は、クライアント側チューニングとサーバとのインタラクションのための軽量なLoRAモジュールであるtextscFedLoRA と、$k$-near を備えたグローバルモデルである textscFedMem を導入したパーソナライズされたS2Tフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-18T15:39:38Z) - Rate-Adaptive Coding Mechanism for Semantic Communications With
Multi-Modal Data [23.597759255020296]
本稿では,従来のチャネルエンコーダ/デコーダを組み込んだ分散マルチモーダルセマンティック通信フレームワークを提案する。
様々な種類のマルチモーダルなセマンティックタスクに対して、一般的なレート適応型符号化機構を確立する。
シミュレーションの結果,提案手法は従来のコミュニケーションシステムと既存のセマンティック通信システムより優れていることがわかった。
論文 参考訳(メタデータ) (2023-05-18T07:31:37Z) - Joint Task and Data Oriented Semantic Communications: A Deep Separate
Source-channel Coding Scheme [17.4244108919728]
データ伝達とセマンティックタスクの両方に役立てるために、共同データ圧縮とセマンティック分析がセマンティックコミュニケーションにおいて重要な問題となっている。
本稿では,共同作業とデータ指向のセマンティックコミュニケーションのためのディープ・ソースチャネル・コーディング・フレームワークを提案する。
深層学習モデルの過度な問題に対処するために,反復学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-27T08:34:37Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
フェデレートされたエッジ学習は、プライバシー保護の方法で無線ネットワークのエッジにインテリジェンスをデプロイする、有望な技術である。
このような設定の下で、複数のクライアントは、エッジサーバの調整の下でグローバルジェネリックモデルを協調的にトレーニングする。
本稿では,アナログオーバー・ザ・エア計算を用いて通信ボトルネックに対処する分散トレーニングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-02-24T08:41:19Z) - Optimization of Image Transmission in a Cooperative Semantic
Communication Networks [68.2233384648671]
画像伝送のためのセマンティック通信フレームワークを開発した。
サーバは、セマンティックコミュニケーション技術を用いて、画像の集合を協調的にユーザへ送信する。
抽出した意味情報と原画像との相関関係を測定するために,マルチモーダル・メトリックを提案する。
論文 参考訳(メタデータ) (2023-01-01T15:59:13Z) - Learning Task-Oriented Communication for Edge Inference: An Information
Bottleneck Approach [3.983055670167878]
ローエンドエッジ装置は、ローカルデータサンプルの抽出された特徴ベクトルを強力なエッジサーバに送信して処理する。
帯域幅が限られているため、データを低遅延推論のための情報的かつコンパクトな表現に符号化することが重要である。
特徴抽出,ソース符号化,チャネル符号化を協調的に最適化する学習型通信方式を提案する。
論文 参考訳(メタデータ) (2021-02-08T12:53:32Z) - Deep Learning-based Resource Allocation For Device-to-Device
Communication [66.74874646973593]
デバイス間通信(D2D)を用いたマルチチャネルセルシステムにおいて,リソース割り当ての最適化のためのフレームワークを提案する。
任意のチャネル条件に対する最適な資源配分戦略をディープニューラルネットワーク(DNN)モデルにより近似する深層学習(DL)フレームワークを提案する。
シミュレーションの結果,提案手法のリアルタイム性能を低速で実現できることが確認された。
論文 参考訳(メタデータ) (2020-11-25T14:19:23Z) - Learning Structured Communication for Multi-agent Reinforcement Learning [104.64584573546524]
本研究では,マルチエージェント強化学習(MARL)環境下での大規模マルチエージェント通信機構について検討する。
本稿では、より柔軟で効率的な通信トポロジを用いて、LSC(Learning Structured Communication)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-11T07:19:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。