Language-Based Bayesian Optimization Research Assistant (BORA)
- URL: http://arxiv.org/abs/2501.16224v1
- Date: Mon, 27 Jan 2025 17:20:04 GMT
- Title: Language-Based Bayesian Optimization Research Assistant (BORA)
- Authors: Abdoulatif Cissé, Xenophon Evangelopoulos, Vladimir V. Gusev, Andrew I. Cooper,
- Abstract summary: Contextualizing domain knowledge is a powerful approach to guide searches for fruitful regions.
Here, we propose use of Language Models (LLMs) for contextualizing search optimization.
- Score: 0.0
- License:
- Abstract: Many important scientific problems involve multivariate optimization coupled with slow and laborious experimental measurements. These complex, high-dimensional searches can be defined by non-convex optimization landscapes that resemble needle-in-a-haystack surfaces, leading to entrapment in local minima. Contextualizing optimizers with human domain knowledge is a powerful approach to guide searches to localized fruitful regions. However, this approach is susceptible to human confirmation bias and it is also challenging for domain experts to keep track of the rapidly expanding scientific literature. Here, we propose the use of Large Language Models (LLMs) for contextualizing Bayesian optimization (BO) via a hybrid optimization framework that intelligently and economically blends stochastic inference with domain knowledge-based insights from the LLM, which is used to suggest new, better-performing areas of the search space for exploration. Our method fosters user engagement by offering real-time commentary on the optimization progress, explaining the reasoning behind the search strategies. We validate the effectiveness of our approach on synthetic benchmarks with up to 15 independent variables and demonstrate the ability of LLMs to reason in four real-world experimental tasks where context-aware suggestions boost optimization performance substantially.
Related papers
- Align-Pro: A Principled Approach to Prompt Optimization for LLM Alignment [40.71270945505082]
Large language models (LLMs) are increasingly integrated into various societal and decision-making processes.
Traditional methods, such as reinforcement learning from human feedback (RLHF), achieve alignment by fine-tuning model parameters.
In contrast, prompt optimization is a viable alternative to RLHF for LLM alignment.
arXiv Detail & Related papers (2025-01-07T03:14:39Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - Localized Zeroth-Order Prompt Optimization [54.964765668688806]
We propose a novel algorithm, namely localized zeroth-order prompt optimization (ZOPO)
ZOPO incorporates a Neural Tangent Kernel-based derived Gaussian process into standard zeroth-order optimization for an efficient search of well-performing local optima in prompt optimization.
Remarkably, ZOPO outperforms existing baselines in terms of both the optimization performance and the query efficiency.
arXiv Detail & Related papers (2024-03-05T14:18:15Z) - How Multimodal Integration Boost the Performance of LLM for
Optimization: Case Study on Capacitated Vehicle Routing Problems [33.33996058215666]
Large language models (LLMs) have positioned themselves as capable tools for addressing complex optimization challenges.
We propose to enhance the optimization performance using multimodal LLM capable of processing both textual and visual prompts.
arXiv Detail & Related papers (2024-03-04T06:24:21Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - PhaseEvo: Towards Unified In-Context Prompt Optimization for Large
Language Models [9.362082187605356]
We present PhaseEvo, an efficient automatic prompt optimization framework that combines the generative capability of LLMs with the global search proficiency of evolution algorithms.
PhaseEvo significantly outperforms the state-of-the-art baseline methods by a large margin whilst maintaining good efficiency.
arXiv Detail & Related papers (2024-02-17T17:47:10Z) - Can LLMs Configure Software Tools [0.76146285961466]
In software engineering, the meticulous configuration of software tools is crucial in ensuring optimal performance within intricate systems.
In this study, we embark on an exploration of leveraging Large-Language Models (LLMs) to streamline the software configuration process.
Our work presents a novel approach that employs LLMs, such as Chat-GPT, to identify starting conditions and narrow down the search space, improving configuration efficiency.
arXiv Detail & Related papers (2023-12-11T05:03:02Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
We aim to enhance arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization.
We identify a previously overlooked objective of query dependency in such optimization.
We introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data.
arXiv Detail & Related papers (2023-09-13T01:12:52Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.